cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A106191 Expansion of sqrt(1-4x)/(1-x).

Original entry on oeis.org

1, -1, -3, -7, -17, -45, -129, -393, -1251, -4111, -13835, -47427, -164999, -581023, -2066823, -7415703, -26805393, -97520733, -356810313, -1312087713, -4846614093, -17974854933, -66907388973, -249872516253, -935991743553, -3515800038201, -13239692841105
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Comments

Row sums of number triangle A106190. Partial sums of A002420.
For n >= 1, the absolute values also give the iterates of A122237, starting from 0. (A122237(0), A122237(A122237(0)), A122237(A122237(A122237(0))), ...), this stems from the fact that the sequence gives the positions of terms with binary expansion 1(10){n-1}0 in A014486 (see A080675).

Crossrefs

|a(n)| = A080300(A080675(n)) = A075161(A001348(n)) (for n >= 1) = A075163(A000244(A008578(n-2))) = A014137(n-1)+A014138(n-2) = 2*A014137(n-1)-1, for n >= 2 (because binomial(2n+2, n+1)/(2n+1) = 2*A000108(n)).

Formula

a(n) = Sum_{k=0..n} binomial(2k, k)/(1-2k).
G.f.: (2/(1-x))/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
D-finite with recurrence: a(0)=1, a(1)=-1; for n>1, a(n) = (1/n)*((5*n-6)*a(n-1) - (4*n-6)*a(n-2)). - Tani Akinari, Aug 25 2013

Extensions

Barry's formula made more succinct, as well as comments regarding interpretation as absolute values added by Antti Karttunen, Sep 14 2006

A075163 Position of A075165(n) in A014486 plus one.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 8, 7, 11, 24, 13, 66, 25, 12, 9, 198, 16, 627, 27, 26, 67, 2057, 14, 15, 199, 17, 69, 6919, 30, 23715, 18, 68, 628, 29, 41, 82501, 2058, 200, 28, 290513, 72, 1033413, 201, 31, 6920, 3707853, 32, 38, 39, 629, 630, 13402698, 44, 71, 70, 2059
Offset: 1

Views

Author

Antti Karttunen, Sep 13 2002

Keywords

Comments

See A075166.

Crossrefs

Inverse of A075164. a(n) = A075161(n-1)+1.

Formula

a(n) = A106453(A106442(n)). - Antti Karttunen, May 09 2005

A075162 Position of A014486(n) in A075165, minus one.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 15, 6, 9, 14, 11, 23, 24, 17, 26, 31, 63, 80, 511, 255, 65535, 10, 13, 20, 19, 39, 34, 29, 44, 47, 95, 134, 767, 383, 98303, 48, 49, 74, 35, 71, 124, 53, 242, 127, 1023, 728, 32767, 4095, 16777215, 624, 161, 19682, 33554431, 262143, 6560
Offset: 0

Views

Author

Antti Karttunen, Sep 13 2002

Keywords

Comments

See A075166.

Crossrefs

Inverse of A075161. a(n) = A075164(n+1)-1. Cf. A075157, A075169.

A215406 A ranking algorithm for the lexicographic ordering of the Catalan families.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4
Offset: 0

Views

Author

Peter Luschny, Aug 09 2012

Keywords

Comments

See Antti Karttunen's code in A057117. Karttunen writes: "Maple procedure CatalanRank is adapted from the algorithm 3.23 of the CAGES (Kreher and Stinson) book."
For all n>0, a(A014486(n)) = n = A080300(A014486(n)). The sequence A080300 differs from this one in that it gives 0 for those n which are not found in A014486. - Antti Karttunen, Aug 10 2012

Crossrefs

Programs

  • Maple
    A215406 := proc(n) local m,a,y,t,x,u,v;
    m := iquo(A070939(n), 2);
    a := A030101(n);
    y := 0; t := 1;
    for x from 0 to 2*m-2 do
        if irem(a, 2) = 1 then y := y + 1
        else u := 2*m - x;
             v := m-1 - iquo(x+y,2);
             t := t + A037012(u,v);
             y := y - 1 fi;
        a := iquo(a, 2) od;
    A014137(m) - t end:
    seq(A215406(i),i=0..199); # Peter Luschny, Aug 10 2012
  • Mathematica
    A215406[n_] := Module[{m, d, a, y, t, x, u, v}, m = Quotient[Length[d = IntegerDigits[n, 2]], 2]; a = FromDigits[Reverse[d], 2]; y = 0; t = 1; For[x = 0, x <= 2*m - 2, x++, If[Mod[a, 2] == 1, y++, u = 2*m - x; v = m - Quotient[x + y, 2] - 1; t = t - Binomial[u - 1, v - 1] + Binomial[u - 1, v]; y--]; a = Quotient[a, 2]]; (1 - I*Sqrt[3])/2 - 4^(m + 1)*Gamma[m + 3/2]*Hypergeometric2F1[1, m + 3/2, m + 3, 4]/(Sqrt[Pi]*Gamma[m + 3]) - t]; Table[A215406[n] // Simplify, {n, 0, 86}] (* Jean-François Alcover, Jul 25 2013, translated and adapted from Peter Luschny's Maple program *)
  • Sage
    def A215406(n) : # CatalanRankGlobal(n)
        m = A070939(n)//2
        a = A030101(n)
        y = 0; t = 1
        for x in (1..2*m-1) :
            u = 2*m - x; v = m - (x+y+1)/2
            mn = binomial(u, v) - binomial(u, v-1)
            t += mn*(1 - a%2)
            y -= (-1)^a
            a = a//2
        return A014137(m) - t

A106451 Position of A106455(n+1) in A014486.

Original entry on oeis.org

0, 1, 2, 3, 6, 5, 4, 7, 11, 15, 9, 12, 23, 10, 16, 8, 19, 29, 65, 40, 14, 24, 67, 13, 197, 66, 30, 26, 25, 43, 626, 20, 2058, 52, 70, 82, 2056, 198, 72, 41, 6918, 38, 628, 68, 33, 203, 23714, 34, 28, 627, 53, 200, 199, 85, 82500, 27, 204, 71, 290512, 124, 1033412
Offset: 0

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

See A106456.

Crossrefs

Inverse: A106452. a(n) = A106453(n+1)-1. GF(2)[X]-analog of A075161.
Showing 1-5 of 5 results.