cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A137717 Hankel transform of A106191.

Original entry on oeis.org

1, -4, 4, 8, -32, 32, 64, -256, 256, 512, -2048, 2048, 4096, -16384, 16384, 32768, -131072, 131072, 262144, -1048576, 1048576, 2097152, -8388608, 8388608, 16777216, -67108864, 67108864, 134217728, -536870912, 536870912
Offset: 0

Views

Author

Paul Barry, Feb 08 2008

Keywords

Comments

Hankel transform of A132310. [From Paul Barry, Apr 26 2009]

Crossrefs

Apart from signs, essentially the same as A096252.

Programs

  • Mathematica
    LinearRecurrence[{-2,-4},{1,-4},30] (* Harvey P. Dale, Oct 05 2017 *)

Formula

G.f.: (1-2x)/(1+2x+4x^2).
a(n)=Product{k=0..n, (3*cos(2*pi*(k-1)/3)/2-5/4-2*0^k)^(n-k)};
a(n) = 2^n*A061347(n+2) = -2a(n-1)-4a(n-2). - R. J. Mathar, Feb 21 2008

A127301 Matula-Goebel signatures for plane general trees encoded by A014486.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 6, 7, 5, 16, 12, 12, 14, 10, 12, 9, 14, 19, 13, 10, 13, 17, 11, 32, 24, 24, 28, 20, 24, 18, 28, 38, 26, 20, 26, 34, 22, 24, 18, 18, 21, 15, 28, 21, 38, 53, 37, 26, 37, 43, 29, 20, 15, 26, 37, 23, 34, 43, 67, 41, 22, 29, 41, 59, 31, 64, 48, 48, 56, 40, 48, 36
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted general trees encoded in range [A014137(n-1)..A014138(n)] of A014486 to A000081(n+1) distinct non-oriented rooted general trees, encoded by their Matula-Goebel numbers. The latter encoding is explained in A061773.
A005517 and A005518 give the minimum and maximum value occurring in each such range.
Primes occur at positions given by A057548 (not in order, and with duplicates), and similarly, semiprimes, A001358, occur at positions given by A057518, and in general, A001222(a(n)) = A057515(n).
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127301(SP(n)) = A127301(n) for all n, then it preserves the non-oriented form of a general tree, which implies also that it is Łukasiewicz-word permuting, satisfying A129593(SP(n)) = A129593(n) for all n >= 0. Examples of such automorphisms include A072796, A057508, A057509/A057510, A057511/A057512, A057164, A127285/A127286 and A127287/A127288.
A206487(n) tells how many times n occurs in this sequence. - Antti Karttunen, Jan 03 2013

Examples

			A000081(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, A014486(5) = 44 (= 101100 in binary = A063171(5)), encodes the following plane tree:
.....o
.....|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(1) * A000040(A000040(1)) = 2*3 = 6, thus a(5)=6.
Likewise, A014486(6) = 50 (= 110010 in binary = A063171(6)) encodes the plane tree:
.o
.|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(A000040(1)) * A000040(1) = 3*2 = 6, thus a(6) is also 6, which shows these two trees are identical if one ignores their orientation.
		

Crossrefs

a(A014138(n)) = A007097(n+1), a(A014137(n)) = A000079(n+1) for all n.
a(|A106191(n)|) = A033844(n-1) for all n >= 1.
For standard instead of binary encoding we have A358506.
A000108 counts ordered rooted trees, unordered A000081.
A014486 lists binary encodings of ordered rooted trees.

Programs

  • Mathematica
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    binbalQ[n_]:=n==0||With[{dig=IntegerDigits[n,2]},And@@Table[If[k==Length[dig],SameQ,LessEqual][Count[Take[dig,k],0],Count[Take[dig,k],1]],{k,Length[dig]}]];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
    Table[mgnum[bint[n]],{n,Select[Range[0,1000],binbalQ]}] (* Gus Wiseman, Nov 22 2022 *)
  • Scheme
    (define (A127301 n) (*A127301 (A014486->parenthesization (A014486 n)))) ;; A014486->parenthesization given in A014486.
    (define (*A127301 s) (if (null? s) 1 (fold-left (lambda (m t) (* m (A000040 (*A127301 t)))) 1 s)))

Formula

A001222(a(n)) = A057515(n) for all n.

A122237 a(n) = A057548(A082358(n)).

Original entry on oeis.org

1, 3, 8, 7, 22, 21, 18, 17, 20, 64, 63, 59, 58, 62, 50, 49, 46, 45, 48, 61, 57, 55, 54, 196, 195, 190, 189, 194, 176, 175, 171, 170, 174, 193, 188, 185, 184, 148, 147, 143, 142, 146, 134, 133, 130, 129, 132, 145, 141, 139, 138, 192, 187, 173, 169, 183, 181, 167
Offset: 0

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

Iterates: A106191, A122241, A122244. Cf. also A122227, A080067.

A137719 Sequence based on the pattern [3n, 3n, 3n, 3n+2, 3n+1, 3n+2].

Original entry on oeis.org

0, 2, 1, 2, 3, 3, 3, 5, 4, 5, 6, 6, 6, 8, 7, 8, 9, 9, 9, 11, 10, 11, 12, 12, 12, 14, 13, 14, 15, 15, 15, 17, 16, 17, 18, 18, 18, 20, 19, 20, 21, 21, 21, 23, 22, 23, 24, 24, 24, 26, 25, 26, 27, 27, 27, 29, 28, 29, 30, 30, 30, 32, 31, 32, 33, 33, 33, 35, 34
Offset: 0

Views

Author

Paul Barry, Feb 08 2008

Keywords

Comments

Powers of 2 in a scaled version of the Hankel transform of A106191.

Crossrefs

Programs

  • Magma
    [&+[(2*n-i) mod 3: i in [0..Floor(n/2)]]: n in [0..80]]; // Wesley Ivan Hurt, Mar 21 2016
    
  • Maple
    A137719:=n->add(2*n-i mod 3, i=0..floor(n/2)): seq(A137719(n), n=0..100); # Wesley Ivan Hurt, Mar 21 2016
  • Mathematica
    Table[Sum[Mod[2 n - i, 3], {i, 0, Floor[n/2]}], {n, 0, 80}] (* Wesley Ivan Hurt, Mar 21 2016 *)
  • PARI
    apply( A137719(n)={(n=divrem(n-1,6))[1]*3+min(n[2]+2*!n[2],3)}, [0..30]) \\ M. F. Hasler, Oct 27 2019

Formula

a(n) = log(abs(A137718(n)))/log(2).
From R. J. Mathar, Feb 10 2008: (Start)
O.g.f.: 1/(2*(x-1)^2) + (x-1)/(3*(x^2+x+1)) - 1/(4*(x+1)) - 1/(12*(x-1)).
a(n) = 3 + a(n-6). (End)
From Colin Barker, Jun 27 2013: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5).
G.f.: x*(x+2) / ((x-1)^2*(x+1)*(x^2+x+1)). (End)
a(n) = Sum_{i=0..floor(n/2)} (2n-i mod 3). - Wesley Ivan Hurt, Mar 22 2016
a(n) = A004526(n+1) + A079978(n). - R. J. Mathar, Oct 27 2019

A371965 a(n) is the sum of all peaks in the set of Catalan words of length n.

Original entry on oeis.org

0, 0, 0, 1, 6, 27, 111, 441, 1728, 6733, 26181, 101763, 395693, 1539759, 5997159, 23381019, 91244934, 356427459, 1393585779, 5453514729, 21358883439, 83718027429, 328380697629, 1288947615849, 5062603365999, 19896501060225, 78239857877649, 307831771279549, 1211767933187601
Offset: 0

Views

Author

Stefano Spezia, Apr 14 2024

Keywords

Examples

			a(3) = 1 because there is 1 Catalan word of length 3 with one peak: 010.
a(4) = 6 because there are 6 Catalan words of length 4 with one peak: 0010, 0100, 0101, 0110, 0120, and 0121 (see Figure 10 at p. 19 in Baril et al.).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 0,
          a(n-1)+binomial(2*n-3, n-3))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Apr 15 2024
    # Second Maple program:
    A371965 := series((exp(2*x)*BesselI(0,2*x)-1)/2-exp(x)*(int(BesselI(0,2*x)*exp(x), x)), x = 0, 29):
    seq(n!*coeff(A371965, x, n), n = 0 .. 28); # Mélika Tebni, Jun 15 2024
  • Mathematica
    CoefficientList[Series[(1-3x-(1-x)Sqrt[1-4x])/(2(1-x) Sqrt[1-4x]),{x,0,28}],x]
  • Python
    from math import comb
    def A371965(n): return sum(comb((n-i<<1)-3,n-i-3) for i in range(n-2)) # Chai Wah Wu, Apr 15 2024

Formula

G.f.: (1 - 3*x - (1 - x)*sqrt(1 - 4*x))/(2*(1 - x)*sqrt(1 - 4*x)).
a(n) = Sum_{i=1..n-1} binomial(2*(n-i)-1,n-i-2).
a(n) ~ 2^(2*n)/(6*sqrt(Pi*n)).
a(n)/A371963(n) ~ 1.
a(n) - a(n-1) = A002054(n-2).
From Mélika Tebni, Jun 15 2024: (Start)
E.g.f.: (exp(2*x)*BesselI(0,2*x)-1)/2 - exp(x)*Integral_{x=-oo..oo} BesselI(0,2*x)*exp(x) dx.
a(n) = binomial(2*n,n)*(1/2 + hypergeom([1,n+1/2],[n+1],4)) + i/sqrt(3) - 0^n/2.
a(n) = (3*A106191(n) + A006134(n) + 4*0^n) / 8.
a(n) = A281593(n) - (A000984(n) + 0^n) / 2. (End)
Binomial transform of A275289. - Alois P. Heinz, Jun 20 2025

A080675 a(n) = (5*4^n - 8)/6.

Original entry on oeis.org

2, 12, 52, 212, 852, 3412, 13652, 54612, 218452, 873812, 3495252, 13981012, 55924052, 223696212, 894784852, 3579139412, 14316557652, 57266230612, 229064922452, 916259689812, 3665038759252, 14660155037012, 58640620148052, 234562480592212, 938249922368852
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2003

Keywords

Comments

These numbers have a simple binary pattern: 10,1100,110100,11010100,1101010100, ... i.e., the n-th term has a binary expansion 1(10){n-1}0, that is, there are n-1 10's between the most significant 1 and the least significant 0.

Crossrefs

a(n) = A072197(n-1) - 1 = A014486(|A106191(n)|). a(n) = A079946(A020988(n-2)) for n>=2. Cf. also A122229.

Programs

Formula

a(1)=2, a(2)=12, a(n)=5*a(n-1)-4*a(n-2). - Harvey P. Dale, Oct 16 2012

Extensions

Further comments added by Antti Karttunen, Sep 14 2006

A122228 Iterates of A122227, starting from 0.

Original entry on oeis.org

0, 1, 3, 8, 20, 55, 160, 493, 1579, 5212, 17595, 60462, 210749, 743284, 2647461, 9509504
Offset: 0

Views

Author

Antti Karttunen, Sep 14 2006

Keywords

Crossrefs

Programs

A106190 Triangle read by rows: T(n,k) = binomial(2(n-k),n-k)/(1-2(n-k)).

Original entry on oeis.org

1, -2, 1, -2, -2, 1, -4, -2, -2, 1, -10, -4, -2, -2, 1, -28, -10, -4, -2, -2, 1, -84, -28, -10, -4, -2, -2, 1, -264, -84, -28, -10, -4, -2, -2, 1, -858, -264, -84, -28, -10, -4, -2, -2, 1, -2860, -858, -264, -84, -28, -10, -4, -2, -2, 1, -9724, -2860, -858, -264, -84, -28, -10, -4, -2, -2, 1, -33592, -9724, -2860, -858
Offset: 0

Views

Author

Paul Barry, Apr 24 2005

Keywords

Comments

Sequence array for expansion of sqrt(1-4x).
Row sums are A106191. Diagonal sums are A106192. Sequence array for A002420. Inverse of number triangle A106187.
Riordan array (sqrt(1-4x),x).

Examples

			Triangle begins
1;
-2,1;
-2,-2,1;
-4,-2,-2,1;
-10,-4,-2,-2,1;
-28,-10,-4,-2,-2,1;
		

Programs

  • Mathematica
    T[n_, k_] := Binomial[2(n - k), n - k]/(1 - 2(n - k)); Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Apr 25 2005 *)

Extensions

More terms from Robert G. Wilson v, Apr 25 2005

A137720 Expansion of sqrt(1-4*x)/(1-3*x).

Original entry on oeis.org

1, 1, 1, -1, -13, -67, -285, -1119, -4215, -15505, -56239, -202309, -724499, -2589521, -9254363, -33111969, -118725597, -426892131, -1539965973, -5575175319, -20260052337, -73908397851, -270657727593, -994938310059
Offset: 0

Views

Author

Paul Barry, Feb 08 2008

Keywords

Comments

Hankel transform is A120617. In general, sqrt(1-4*x)/(1-k*x) has Hankel transform with g.f. of (1-2*x)/(1+2*(k+2)*x+4*x^2).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x]/(1-3*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 31 2014 *)
    FullSimplify[Table[I*3^(-1/2+n) + 2^(1+2*n)*Gamma[1/2+n] * Hypergeometric2F1Regularized[1, 1/2+n, 2+n, 4/3]/(3*Sqrt[Pi]), {n, 0, 20}]] (* Vaclav Kotesovec, Jul 31 2014 *)
  • PARI
    x='x+O('x^50); Vec(sqrt(1-4*x)/(1-3*x)) \\ G. C. Greubel, Mar 21 2017

Formula

a(n) = Sum_{k=0..n} 3^k*C(2*n-2*k,n-k)/(1-(2*n-2*k)).
D-finite with recurrence: n*a(n) + (6-7*n)*a(n-1) + 6*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 16 2011
a(n) ~ -2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 31 2014
a(n) = (-1)^n * A157674(2*n+1). - Vaclav Kotesovec, Jul 31 2014

A137718 A scaled Hankel transform.

Original entry on oeis.org

1, -4, 2, 4, -8, 8, 8, -32, 16, 32, -64, 64, 64, -256, 128, 256, -512, 512, 512, -2048, 1024, 2048, -4096, 4096, 4096, -16384, 8192, 16384, -32768, 32768, 32768, -131072, 65536, 131072, -262144, 262144, 262144
Offset: 0

Views

Author

Paul Barry, Feb 08 2008

Keywords

Comments

A137717=2^floor(n/2)*a(n) is the Hankel transform of A106191.

Crossrefs

Cf. A137719.

Formula

a(n)=A137717(n)/2^floor(n/2).
Empirical g.f.: -(4*x^3-4*x^2+4*x-1) / (4*x^4+2*x^2+1). - Colin Barker, Jun 27 2013
Showing 1-10 of 10 results.