cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A116861 Triangle read by rows: T(n,k) is the number of partitions of n such that the sum of the parts, counted without multiplicities, is equal to k (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 1, 3, 1, 1, 3, 1, 1, 4, 1, 0, 3, 2, 2, 2, 5, 1, 1, 3, 3, 2, 4, 2, 6, 1, 0, 5, 2, 3, 4, 4, 3, 8, 1, 1, 4, 3, 4, 7, 4, 5, 3, 10, 1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12, 1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15, 1, 0, 6, 4, 5, 10, 10, 9, 10, 11, 10, 7, 18, 1, 1, 6, 4, 5, 15, 11, 13, 9, 16, 11, 13, 8, 22
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2006

Keywords

Comments

Conjecture: Reverse the rows of the table to get an infinite lower-triangular matrix b with 1's on the main diagonal. The third diagonal of the inverse of b is minus A137719. - George Beck, Oct 26 2019
Proof: The reversed rows yield the matrix I+N where N is strictly lower triangular, N[i,j] = 0 for j >= i, having its 2nd diagonal equal to the 2nd column (1, 0, 1, 0, 1, ...): N[i+1,i] = A000035(i), i >= 1, and 3rd diagonal equal to the 3rd column of this triangle, (2, 1, 2, 3, 3, 3, ...): N[i+2,i] = A137719(i), i >= 1. It is known that (I+N)^-1 = 1 - N + N^2 - N^3 +- .... Here N^2 has not only the second but also the 3rd diagonal zero, because N^2[i+2,i] = N[i+2,i+1]*N[i+1,i] = A000035(i+1)*A000035(i) = 0. Therefore the 3rd diagonal of (I+N)^-1 is equal to -A137719 without leading 0. - M. F. Hasler, Oct 27 2019
From Gus Wiseman, Aug 27 2023: (Start)
Also the number of ways to write n-k as a nonnegative linear combination of a strict integer partition of k. Also the number of ways to write n as a (strictly) positive linear combination of a strict integer partition of k. Row n=7 counts the following:
7*1 . 1*2+5*1 1*3+4*1 1*3+2*2 1*5+2*1 1*7
2*2+3*1 2*3+1*1 1*4+3*1 1*3+1*2+2*1 1*4+1*3
3*2+1*1 1*5+1*2
1*6+1*1
1*4+1*2+1*1
(End)

Examples

			T(10,7) = 4 because we have [6,1,1,1,1], [4,3,3], [4,2,2,1,1] and [4,2,1,1,1,1] (6+1=4+3=4+2+1=7).
Triangle starts:
  1;
  1, 1;
  1, 0, 2;
  1, 1, 1, 2;
  1, 0, 2, 1, 3;
  1, 1, 3, 1, 1,  4;
  1, 0, 3, 2, 2,  2, 5;
  1, 1, 3, 3, 2,  4, 2, 6;
  1, 0, 5, 2, 3,  4, 4, 3, 8;
  1, 1, 4, 3, 4,  7, 4, 5, 3, 10;
  1, 0, 5, 3, 4,  7, 7, 6, 6,  5, 12;
  1, 1, 6, 4, 3, 12, 6, 8, 7,  9,  5, 15;
  ...
		

Crossrefs

Cf. A000041 (row sums), A000009 (diagonal), A014153.
Cf. A114638 (count partitions with #parts = sum(distinct parts)).
Column 1: A000012, column 2: A000035(1..), column 3: A137719(1..).
For subsets instead of partitions we have A026820.
This statistic is ranked by A066328.
The central diagonal is T(2n,n) = A364910(n), non-strict A364907.
Partial sums of columns are columns of A364911.
Same as A364916 (offset 0) with rows reversed.
A008284 counts partitions by length, strict A008289.
A364912 counts linear combinations of partitions.
A364913 counts combination-full partitions, strict A364839.

Programs

  • Maple
    g:= -1+product(1+t^j*x^j/(1-x^j), j=1..40): gser:= simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 14 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; local f, g, j;
          if n=0 then [1] elif i<1 then [ ] else f:= b(n, i-1);
             for j to n/i do
               f:= zip((x, y)->x+y, f, [0$i, b(n-i*j, i-1)[]], 0)
             od; f
          fi
        end:
    T:= n-> subsop(1=NULL, b(n, n))[]:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    max = 14; s = Series[-1+Product[1+t^j*x^j/(1-x^j), {j, 1, max}], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
    Table[Length[Select[IntegerPartitions[n],Total[Union[#]]==k&]],{n,0,10},{k,0,n}] (* Gus Wiseman, Aug 29 2023 *)
  • PARI
    A116861(n,k,s=0)={forpart(X=n,vecsum(Set(X))==k&&s++,k);s} \\ M. F. Hasler, Oct 27 2019

Formula

G.f.: -1 + Product_{j>=1} (1 + t^j*x^j/(1-x^j)).
Sum_{k=1..n} T(n,k) = A000041(n).
T(n,n) = A000009(n).
Sum_{k=1..n} k*T(n,k) = A014153(n-1).
T(n,1) = 1. T(n,2) = A000035(n+1). T(n,3) = A137719(n-2). - R. J. Mathar, Oct 27 2019
T(n,4) = A002264(n-1) + A121262(n). - R. J. Mathar, Oct 28 2019

A364916 Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
As a triangle, also the number of ways to write n as a *positive* linear combination of the parts of a strict integer partition of k.

Examples

			Array begins:
  1  1  1  2  2  3  4   5   6   8   10   12  15   18   22   27
  0  1  0  1  1  1  2   2   3   3   5    5   7    8    10   12
  0  1  1  2  1  2  4   4   5   6   9    10  13   15   19   23
  0  1  0  3  2  2  4   4   6   7   11   11  15   17   22   27
  0  1  1  3  3  3  7   7   8   10  16   17  23   27   33   42
  0  1  0  3  2  4  7   6   9   9   17   17  23   26   33   43
  0  1  1  5  3  4  12  10  13  16  26   27  36   42   52   68
  0  1  0  4  3  3  10  11  13  13  27   25  35   40   51   67
  0  1  1  5  4  5  15  13  19  20  36   37  51   58   72   97
  0  1  0  6  4  5  14  13  18  23  42   39  54   61   78   105
  0  1  1  6  4  6  20  17  23  25  54   50  69   80   98   138
  0  1  0  6  4  5  19  16  23  24  54   55  71   80   103  144
  0  1  1  8  6  7  27  23  30  35  72   70  103  113  139  199
  0  1  0  7  5  6  24  21  29  31  75   68  95   115  139  201
  0  1  1  8  5  7  31  27  36  39  90   86  122  137  178  255
  0  1  0  9  6  8  31  27  38  42  100  93  129  148  187  289
Triangle begins:
   1
   1  0
   1  1  0
   2  0  1  0
   2  1  1  1  0
   3  1  2  0  1  0
   4  1  1  3  1  1  0
   5  2  2  2  3  0  1  0
   6  2  4  2  3  3  1  1  0
   8  3  4  4  3  2  5  0  1  0
  10  3  5  4  7  4  3  4  1  1  0
  12  5  6  6  7  7  4  3  5  0  1  0
  15  5  9  7  8  6 12  3  4  6  1  1  0
  18  7 10 11 10  9 10 10  5  4  6  0  1  0
  22  8 13 11 16  9 13 11 15  5  4  6  1  1  0
  27 10 15 15 17 17 16 13 13 14  6  4  8  0  1  0
		

Crossrefs

Same as A116861 with offset 0 and rows reversed, non-strict version A364912.
Row n = 0 is A000009.
Row n = 1 is A096765.
Row n = 2 is A365005.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A000035.
Column k = 3 is A137719.
The main diagonal is A364910.
Left half has row sums A365002.
For not just strict partitions we have A365004, diagonal A364907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A066328 adds up distinct prime indices.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    t[n_,k_]:=Length[Join@@Table[combs[n,ptn],{ptn,Select[IntegerPartitions[k],UnsameQ@@#&]}]];
    Table[t[k,n-k],{n,0,15},{k,0,n}]

A365658 Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct possible sums of nonempty submultisets.

Original entry on oeis.org

1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 0, 4, 1, 1, 3, 0, 1, 5, 1, 0, 3, 0, 3, 0, 8, 1, 1, 3, 2, 2, 1, 2, 10, 1, 0, 5, 0, 3, 0, 5, 0, 16, 1, 1, 4, 0, 6, 2, 4, 2, 2, 20, 1, 0, 5, 0, 5, 0, 8, 0, 6, 0, 31, 1, 1, 6, 2, 3, 6, 6, 1, 4, 4, 4, 39, 1, 0, 6, 0, 6, 0, 12, 0, 8, 0, 13, 0, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2023

Keywords

Comments

Conjecture: Positions of strictly positive rows are given by A048166.

Examples

			Triangle begins:
  1
  1  1
  1  0  2
  1  1  1  2
  1  0  2  0  4
  1  1  3  0  1  5
  1  0  3  0  3  0  8
  1  1  3  2  2  1  2 10
  1  0  5  0  3  0  5  0 16
  1  1  4  0  6  2  4  2  2 20
  1  0  5  0  5  0  8  0  6  0 31
  1  1  6  2  3  6  6  1  4  4  4 39
  1  0  6  0  6  0 12  0  8  0 13  0 55
  1  1  6  0  6  3 16  3  5  3  7  8  5 71
		

Crossrefs

Row sums are A000041.
Last column n = k is A126796.
Column k = 3 appears to be A137719.
This is the triangle for the rank statistic A299701.
Central column n = 2k is A365660.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,10},{k,n}]

A364911 Triangle read by rows where T(n,k) is the number of integer partitions with sum <= n and with distinct parts summing to k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 5, 2, 5, 3, 3, 1, 6, 3, 8, 4, 4, 4, 1, 7, 3, 11, 6, 6, 6, 5, 1, 8, 4, 14, 9, 8, 10, 7, 6, 1, 9, 4, 19, 11, 11, 14, 11, 9, 8, 1, 10, 5, 23, 14, 15, 21, 15, 14, 11, 10, 1, 11, 5, 28, 17, 19, 28, 22, 20, 17, 15, 12
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

Also the number of ways to write any number up to n as a positive linear combination of a strict integer partition of k.

Examples

			Triangle begins:
  1
  1  1
  1  2  1
  1  3  1  2
  1  4  2  3  2
  1  5  2  5  3  3
  1  6  3  8  4  4  4
  1  7  3 11  6  6  6  5
  1  8  4 14  9  8 10  7  6
  1  9  4 19 11 11 14 11  9  8
  1 10  5 23 14 15 21 15 14 11 10
  1 11  5 28 17 19 28 22 20 17 15 12
  1 12  6 34 21 22 40 28 28 24 24 17 15
  1 13  6 40 25 27 50 38 37 34 35 27 22 18
  1 14  7 46 29 32 65 49 50 43 51 38 35 26 22
  1 15  7 54 33 38 79 62 63 59 68 55 50 41 32 27
Row n = 5 counts the following partitions:
    .    1           2     3         4       5
         1+1         2+2   1+2       1+3     1+4
         1+1+1             1+1+2     1+1+3   2+3
         1+1+1+1           1+1+1+2
         1+1+1+1+1         1+2+2
Row n = 5 counts the following positive linear combinations:
  .  1*1  1*2  1*3      1*4      1*5
     2*1  2*2  1*2+1*1  1*3+1*1  1*3+1*2
     3*1       1*2+2*1  1*3+2*1  1*4+1*1
     4*1       1*2+3*1
     5*1       2*2+1*1
		

Crossrefs

Column n = k is A000009.
Column k = 0 is A000012.
Column k = 1 is A000027.
Row sums are A000070.
Column k = 2 is A008619.
Columns are partial sums of columns of A116861.
Column k = 3 appears to be the partial sums of A137719.
Diagonal n = 2k is A364910.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A114638 counts partitions where (length) = (sum of distinct parts).
A116608 counts partitions by number of distinct parts.
A364350 counts combination-free strict partitions, complement A364839.

Programs

  • Mathematica
    Table[Length[Select[Array[IntegerPartitions,n+1,0,Join],Total[Union[#]]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(prod(k=1, n, 1 - y^k + y^k/(1 - x^k), 1/(1 - x) + O(x*x^n)))]}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 11 2024

Formula

G.f.: A(x,y) = (1/(1 - x)) * Product_{k>=1} (1 - y^k + y^k/(1 - x^k)). - Andrew Howroyd, Jan 11 2024

A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 1, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 0, 4, 0, 0, 2, 2, 0, 0, 1, 0, 1, 0, 5, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 5, 0, 0, 2, 5, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2023

Keywords

Examples

			The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6).
Triangle begins:
  1
  0  1
  0  1  0
  0  1  0  1
  0  1  0  1  0
  0  1  0  2  0  0
  0  1  0  2  0  0  1
  0  1  0  3  0  0  0  1
  0  1  0  3  0  0  1  1  0
  0  1  0  4  0  0  0  3  0  0
  0  1  0  4  0  0  2  2  0  0  1
  0  1  0  5  0  0  0  5  0  0  0  1
  0  1  0  5  0  0  2  5  0  0  0  0  2
  0  1  0  6  0  0  0  8  0  0  0  1  0  2
  0  1  0  6  0  0  3  7  0  0  0  0  3  1  1
  0  1  0  7  0  0  0 12  0  0  0  1  0  4  0  2
  0  1  0  7  0  0  3 11  0  0  0  1  3  2  2  1  1
  0  1  0  8  0  0  0 16  0  0  0  1  0  7  0  3  0  2
  0  1  0  8  0  0  4 15  0  0  0  1  3  3  6  2  0  0  3
  0  1  0  9  0  0  0 21  0  0  0  2  0  9  0  7  0  1  0  4
  0  1  0  9  0  0  4 20  0  0  1  0  4  8  5  5  0  0  2  0  5
Row n = 14 counts the following partitions (A..E = 10..14):
  (E)  .  (D1)  .  .  (761)  (B21)  .  .  .  .  (6521)  (8321)  (7421)
          (C2)        (752)  (A31)              (6431)
          (B3)        (743)  (941)              (5432)
          (A4)               (932)
          (95)               (851)
          (86)               (842)
                             (653)
		

Crossrefs

Row sums are A000009.
Rightmost column n = k is A188431, non-strict A126796.
The one-based weighted row sums are A284640.
The corresponding rank statistic is A299701.
The non-strict version is A365658.
Central column n = 2k in the non-strict case is A365660.
Reverse-weighted row-sums are A365922, non-strict A276024.
A000041 counts integer partitions.
A000124 counts distinct sums of subsets of {1..n}.
A365543 counts partitions with a submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,0,15},{k,0,n}]

A373952 Number of integer compositions of n whose run-compression sums to 3.

Original entry on oeis.org

0, 0, 0, 3, 2, 4, 5, 6, 6, 9, 8, 10, 11, 12, 12, 15, 14, 16, 17, 18, 18, 21, 20, 22, 23, 24, 24, 27, 26, 28, 29, 30, 30, 33, 32, 34, 35, 36, 36, 39, 38, 40, 41, 42, 42, 45, 44, 46, 47, 48, 48, 51, 50, 52, 53, 54, 54, 57, 56, 58, 59, 60, 60, 63, 62, 64, 65, 66
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2024

Keywords

Comments

We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).

Examples

			The a(3) = 3 through a(9) = 9 compositions:
  (3)   (112)  (122)   (33)     (1222)    (11222)    (333)
  (12)  (211)  (221)   (1122)   (2221)    (22211)    (12222)
  (21)         (1112)  (2211)   (11122)   (111122)   (22221)
               (2111)  (11112)  (22111)   (221111)   (111222)
                       (21111)  (111112)  (1111112)  (222111)
                                (211111)  (2111111)  (1111122)
                                                     (2211111)
                                                     (11111112)
                                                     (21111111)
		

Crossrefs

For partitions we appear to have A137719.
Column k = 3 of A373949, rows-reversed A373951.
The compression-sum statistic is represented by A373953, difference A373954.
A003242 counts compressed compositions (anti-runs).
A011782 counts compositions.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==3&]],{n,0,10}]
  • PARI
    A_x(N)={my(x='x+O('x^N)); concat([0, 0, 0], Vec(x^3 *(3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3))))}
    A_x(50) \\ John Tyler Rascoe, Jul 01 2024

Formula

G.f.: x^3 * (3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3)). - John Tyler Rascoe, Jul 01 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 01 2024

A374702 Number of integer compositions of n whose leaders of maximal weakly decreasing runs sum to 3. Column k = 3 of A374748.

Original entry on oeis.org

0, 0, 0, 2, 3, 6, 9, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88, 99, 111, 123, 137, 150, 165, 180, 196, 212, 230, 247, 266, 285, 305, 325, 347, 368, 391, 414, 438, 462, 488, 513, 540, 567, 595, 623, 653, 682, 713, 744, 776, 808, 842, 875, 910, 945, 981
Offset: 0

Views

Author

Gus Wiseman, Aug 12 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The a(0) = 0 through a(8) = 17 compositions:
  .  .  .  (3)   (31)   (32)    (33)     (322)     (332)
           (12)  (112)  (122)   (321)    (331)     (3221)
                 (121)  (311)   (1122)   (1222)    (3311)
                        (1112)  (1221)   (3211)    (11222)
                        (1121)  (3111)   (11122)   (12221)
                        (1211)  (11112)  (11221)   (32111)
                                (11121)  (12211)   (111122)
                                (11211)  (31111)   (111221)
                                (12111)  (111112)  (112211)
                                         (111121)  (122111)
                                         (111211)  (311111)
                                         (112111)  (1111112)
                                         (121111)  (1111121)
                                                   (1111211)
                                                   (1112111)
                                                   (1121111)
                                                   (1211111)
		

Crossrefs

The version for k = 2 is A004526.
The version for partitions is A069905 or A001399 (shifted).
For reversed partitions we appear to have A137719.
For length instead of sum we have A241627.
For leaders of constant runs we have A373952.
The opposite rank statistic is A374630, row-sums of A374629.
The corresponding rank statistic is A374741 row-sums of A374740.
Column k = 3 of A374748.
A003242 counts anti-run compositions.
A011782 counts integer compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==3&]],{n,0,15}]
  • PARI
    seq(n)={Vec((2 + x + x^2)/((1 + x + x^2)*(1 + x)*(1 - x)^3) + O(x^(n-2)), -n-1)} \\ Andrew Howroyd, Aug 14 2024

Formula

G.f.: x^3*(2 + x + x^2)/((1 + x + x^2)*(1 + x)*(1 - x)^3). - Andrew Howroyd, Aug 14 2024

Extensions

a(27) onwards from Andrew Howroyd, Aug 14 2024

A137718 A scaled Hankel transform.

Original entry on oeis.org

1, -4, 2, 4, -8, 8, 8, -32, 16, 32, -64, 64, 64, -256, 128, 256, -512, 512, 512, -2048, 1024, 2048, -4096, 4096, 4096, -16384, 8192, 16384, -32768, 32768, 32768, -131072, 65536, 131072, -262144, 262144, 262144
Offset: 0

Views

Author

Paul Barry, Feb 08 2008

Keywords

Comments

A137717=2^floor(n/2)*a(n) is the Hankel transform of A106191.

Crossrefs

Cf. A137719.

Formula

a(n)=A137717(n)/2^floor(n/2).
Empirical g.f.: -(4*x^3-4*x^2+4*x-1) / (4*x^4+2*x^2+1). - Colin Barker, Jun 27 2013

A325987 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k submultisets, k > 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 1, 3, 0, 1, 1, 2, 1, 1, 0, 1, 0, 3, 0, 3, 0, 4, 0, 1, 0, 3, 0, 1, 1, 3, 1, 3, 0, 3, 2, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 5, 0, 3, 0, 5, 0, 3, 0, 6, 0, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 4, 0
Offset: 0

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

The number of submultisets of a partition is the product of its multiplicities, each plus one.

Examples

			Triangle begins:
  1
  0 1
  0 1 1
  0 1 0 2
  0 1 1 1 1 1
  0 1 0 2 0 3 0 1
  0 1 1 3 0 1 1 2 1 1
  0 1 0 3 0 3 0 4 0 1 0 3
  0 1 1 3 1 3 0 3 2 1 0 4 0 1 1 1
  0 1 0 5 0 3 0 5 0 3 0 6 0 1 0 3 0 2 0 1
  0 1 1 4 0 5 0 7 2 1 1 4 0 1 2 5 0 3 0 2 1 0 0 2
Row n = 7 counts the following partitions (empty columns not shown):
  (7)  (43)  (322)  (421)      (31111)  (3211)
       (52)  (331)  (2221)              (22111)
       (61)  (511)  (4111)              (211111)
                    (1111111)
		

Crossrefs

Row lengths are A088881.
Row sums are A000041.
Diagonal n = k is A325830 interspersed with zeros.
Diagonal n + 1 = k is A325828.
Diagonal n - 1 = k is A325836.
Column k = 3 appears to be A137719.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==k&]],{n,0,10},{k,1,Max@@(Times@@(1+Length/@Split[#])&)/@IntegerPartitions[n]}]

Formula

Sum_{k=1..A088881(n)} k * T(n,k) = A000712(n). - Alois P. Heinz, Aug 17 2019

A365005 Number of ways to write 2 as a nonnegative linear combination of a strict integer partition of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 4, 4, 5, 6, 9, 10, 13, 15, 19, 23, 28, 33, 40, 47, 56, 67, 78, 92, 108, 126, 146, 171, 198, 229, 264, 305, 350, 403, 460, 527, 603, 687, 781, 889, 1009, 1144, 1295, 1464, 1653, 1866, 2101, 2364, 2659, 2984, 3347, 3752, 4200, 4696, 5248, 5858
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).

Examples

			The a(6) = 4 ways:
  0*5 + 2*1
  0*4 + 1*2
  0*3 + 0*2 + 2*1
  0*3 + 1*2 + 0*1
		

Crossrefs

For 1 instead of 2 we have A096765.
Column k = n - 2 of A116861.
Row n = 2 of A364916.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Join@@Table[combs[2,ptn], {ptn,Select[IntegerPartitions[n], UnsameQ@@#&]}]],{n,0,30}]
Showing 1-10 of 10 results.