cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A373949 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 2, 4, 0, 1, 0, 4, 4, 7, 0, 1, 1, 5, 6, 5, 14, 0, 1, 0, 6, 10, 10, 14, 23, 0, 1, 1, 6, 14, 12, 29, 26, 39, 0, 1, 0, 9, 16, 19, 40, 54, 46, 71, 0, 1, 1, 8, 22, 22, 64, 82, 96, 92, 124, 0, 1, 0, 10, 26, 30, 82, 137, 144, 204, 176, 214
Offset: 0

Views

Author

Gus Wiseman, Jun 28 2024

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   1   0   3
   0   1   1   2   4
   0   1   0   4   4   7
   0   1   1   5   6   5  14
   0   1   0   6  10  10  14  23
   0   1   1   6  14  12  29  26  39
   0   1   0   9  16  19  40  54  46  71
   0   1   1   8  22  22  64  82  96  92 124
   0   1   0  10  26  30  82 137 144 204 176 214
   0   1   1  11  32  31 121 186 240 331 393 323 378
Row n = 6 counts the following compositions:
  .  (111111)  (222)  (33)     (3111)   (411)   (6)
                      (2211)   (1113)   (114)   (51)
                      (1122)   (1221)   (1311)  (15)
                      (21111)  (12111)  (1131)  (42)
                      (11112)  (11211)  (2112)  (24)
                               (11121)          (141)
                                                (321)
                                                (312)
                                                (231)
                                                (213)
                                                (132)
                                                (123)
                                                (2121)
                                                (1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,4).
		

Crossrefs

Column k = n is A003242 (anti-runs or compressed compositions).
Row-sums are A011782.
Same as A373951 with rows reversed.
Column k = 3 is A373952.
This statistic is represented by A373953, difference A373954.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==k&]], {n,0,10},{k,0,n}]
  • PARI
    T_xy(row_max) = {my(N=row_max+1, x='x+O('x^N), h=1/(1-sum(i=1,N, (y^i*x^i)/(1+x^i*(y^i-1))))); vector(N, n, Vecrev(polcoeff(h, n-1)))}
    T_xy(13) \\ John Tyler Rascoe, Mar 20 2025

Formula

G.f.: 1/(1 - Sum_{i>0} (y^i * x^i)/(1 + x^i * (y^i - 1))). - John Tyler Rascoe, Mar 20 2025

A373948 Run-compression encoded as a transformation of compositions in standard order.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 6, 1, 8, 9, 2, 5, 12, 13, 6, 1, 16, 17, 18, 9, 20, 5, 22, 5, 24, 25, 6, 13, 12, 13, 6, 1, 32, 33, 34, 17, 4, 37, 38, 9, 40, 41, 2, 5, 44, 45, 22, 5, 48, 49, 50, 25, 52, 13, 54, 13, 24, 25, 6, 13, 12, 13, 6, 1, 64, 65, 66, 33, 68, 69, 70, 17, 72
Offset: 0

Views

Author

Gus Wiseman, Jun 24 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).
For the present sequence, the a(n)-th composition in standard order is obtained by compressing the n-th composition in standard order.

Examples

			The standard compositions and their compressions begin:
   0: ()        -->  0: ()
   1: (1)       -->  1: (1)
   2: (2)       -->  2: (2)
   3: (1,1)     -->  1: (1)
   4: (3)       -->  4: (3)
   5: (2,1)     -->  5: (2,1)
   6: (1,2)     -->  6: (1,2)
   7: (1,1,1)   -->  1: (1)
   8: (4)       -->  8: (4)
   9: (3,1)     -->  9: (3,1)
  10: (2,2)     -->  2: (2)
  11: (2,1,1)   -->  5: (2,1)
  12: (1,3)     --> 12: (1,3)
  13: (1,2,1)   --> 13: (1,2,1)
  14: (1,1,2)   -->  6: (1,2)
  15: (1,1,1,1) -->  1: (1)
		

Crossrefs

Positions of 1's are A000225.
The image is A333489, counted by A003242.
Sum of standard composition for a(n) is given by A373953, length A124767.
A037201 gives compression of first differences of primes, halved A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by length A116608.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373949 counts compositions by compressed sum, opposite A373951.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n]]],{n,0,30}]

Formula

A029837(a(n)) = A373953(n).
A000120(a(n)) = A124767(n).

A373953 Sum of run-compression of the n-th integer composition in standard order.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 3, 1, 4, 4, 2, 3, 4, 4, 3, 1, 5, 5, 5, 4, 5, 3, 5, 3, 5, 5, 3, 4, 4, 4, 3, 1, 6, 6, 6, 5, 3, 6, 6, 4, 6, 6, 2, 3, 6, 6, 5, 3, 6, 6, 6, 5, 6, 4, 6, 4, 5, 5, 3, 4, 4, 4, 3, 1, 7, 7, 7, 6, 7, 7, 7, 5, 7, 4, 5, 6, 7, 7, 6, 4, 7, 7, 7, 6, 5, 3, 5
Offset: 0

Views

Author

Gus Wiseman, Jun 25 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).

Examples

			The standard compositions and their compressions and compression sums begin:
   0: ()        --> ()      --> 0
   1: (1)       --> (1)     --> 1
   2: (2)       --> (2)     --> 2
   3: (1,1)     --> (1)     --> 1
   4: (3)       --> (3)     --> 3
   5: (2,1)     --> (2,1)   --> 3
   6: (1,2)     --> (1,2)   --> 3
   7: (1,1,1)   --> (1)     --> 1
   8: (4)       --> (4)     --> 4
   9: (3,1)     --> (3,1)   --> 4
  10: (2,2)     --> (2)     --> 2
  11: (2,1,1)   --> (2,1)   --> 3
  12: (1,3)     --> (1,3)   --> 4
  13: (1,2,1)   --> (1,2,1) --> 4
  14: (1,1,2)   --> (1,2)   --> 3
  15: (1,1,1,1) --> (1)     --> 1
		

Crossrefs

Positions of 1's are A000225.
Counting partitions by this statistic gives A116861, by length A116608.
For length instead of sum we have A124767, counted by A238279 and A333755.
Compositions counted by this statistic are A373949, opposite A373951.
A037201 gives compression of first differences of primes, halved A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A240085 counts compositions with no unique parts.
A333489 ranks anti-runs, counted by A003242.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[First/@Split[stc[n]]],{n,0,100}]

Formula

a(n) = A029837(A373948(n)).

A373951 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 2, 1, 1, 0, 7, 4, 4, 0, 1, 0, 14, 5, 6, 5, 1, 1, 0, 23, 14, 10, 10, 6, 0, 1, 0, 39, 26, 29, 12, 14, 6, 1, 1, 0, 71, 46, 54, 40, 19, 16, 9, 0, 1, 0, 124, 92, 96, 82, 64, 22, 22, 8, 1, 1, 0, 214, 176, 204, 144, 137, 82, 30, 26, 10, 0, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Jun 28 2024

Keywords

Examples

			Triangle begins:
    1
    1   0
    1   1   0
    3   0   1   0
    4   2   1   1   0
    7   4   4   0   1   0
   14   5   6   5   1   1   0
   23  14  10  10   6   0   1   0
   39  26  29  12  14   6   1   1   0
   71  46  54  40  19  16   9   0   1   0
  124  92  96  82  64  22  22   8   1   1   0
Row n = 6 counts the following compositions:
  (6)     (411)   (3111)   (33)     (222)  (111111)  .
  (51)    (114)   (1113)   (2211)
  (15)    (1311)  (1221)   (1122)
  (42)    (1131)  (12111)  (21111)
  (24)    (2112)  (11211)  (11112)
  (141)           (11121)
  (321)
  (312)
  (231)
  (213)
  (132)
  (123)
  (2121)
  (1212)
For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2).
		

Crossrefs

Column k = 0 is A003242 (anti-runs or compressed compositions).
Row-sums are A011782.
Same as A373949 with rows reversed.
Column k = 1 is A373950.
This statistic is represented by A373954, difference A373953.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]],{n,0,10},{k,0,n}]

A373950 Number of integer compositions of n containing two adjacent ones and no other runs.

Original entry on oeis.org

0, 0, 1, 0, 2, 4, 5, 14, 26, 46, 92, 176, 323, 610, 1145, 2108, 3912, 7240, 13289, 24418, 44778, 81814, 149356, 272222, 495144, 899554, 1632176, 2957332, 5352495, 9677266, 17477761, 31536288, 56852495, 102403134, 184302331, 331452440, 595659234, 1069742760
Offset: 0

Views

Author

Gus Wiseman, Jun 28 2024

Keywords

Comments

Also the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) results in a composition of n-1.

Examples

			The a(0) = 0 through a(7) = 14 compositions:
  .  .  (11)  .  (112)  (113)   (114)   (115)
                 (211)  (311)   (411)   (511)
                        (1121)  (1131)  (1123)
                        (1211)  (1311)  (1132)
                                (2112)  (1141)
                                        (1411)
                                        (2113)
                                        (2311)
                                        (3112)
                                        (3211)
                                        (11212)
                                        (12112)
                                        (21121)
                                        (21211)
		

Crossrefs

For any run (not just of ones) we have A003242.
Subdiagonal of A373949.
These compositions are ranked by A373956.
A003242 counts compressed compositions.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A333755 counts compositions by compressed length (number of runs).
A373948 represents the run-compression transformation.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-1&]],{n,0,10}]
  • PARI
    A_x(N)={my(x='x+O('x^N), h=x/((1+x)^2*(1-sum(i=1,N, (x^i /(1+x^i))))^2)); concat([0, 0], Vec(h))}
    A_x(40) \\ John Tyler Rascoe, Jul 02 2024

Formula

a(n>0) = A373949(n,n-1).
G.f.: x/((1-x)^2 * (1 - Sum_{i>0} (x^i/(1+x^i)))^2). - John Tyler Rascoe, Jul 02 2024

Extensions

a(26) onwards from John Tyler Rascoe, Jul 02 2024

A374702 Number of integer compositions of n whose leaders of maximal weakly decreasing runs sum to 3. Column k = 3 of A374748.

Original entry on oeis.org

0, 0, 0, 2, 3, 6, 9, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88, 99, 111, 123, 137, 150, 165, 180, 196, 212, 230, 247, 266, 285, 305, 325, 347, 368, 391, 414, 438, 462, 488, 513, 540, 567, 595, 623, 653, 682, 713, 744, 776, 808, 842, 875, 910, 945, 981
Offset: 0

Views

Author

Gus Wiseman, Aug 12 2024

Keywords

Comments

The weakly decreasing run-leaders of a sequence are obtained by splitting it into maximal weakly decreasing subsequences and taking the first term of each.

Examples

			The a(0) = 0 through a(8) = 17 compositions:
  .  .  .  (3)   (31)   (32)    (33)     (322)     (332)
           (12)  (112)  (122)   (321)    (331)     (3221)
                 (121)  (311)   (1122)   (1222)    (3311)
                        (1112)  (1221)   (3211)    (11222)
                        (1121)  (3111)   (11122)   (12221)
                        (1211)  (11112)  (11221)   (32111)
                                (11121)  (12211)   (111122)
                                (11211)  (31111)   (111221)
                                (12111)  (111112)  (112211)
                                         (111121)  (122111)
                                         (111211)  (311111)
                                         (112111)  (1111112)
                                         (121111)  (1111121)
                                                   (1111211)
                                                   (1112111)
                                                   (1121111)
                                                   (1211111)
		

Crossrefs

The version for k = 2 is A004526.
The version for partitions is A069905 or A001399 (shifted).
For reversed partitions we appear to have A137719.
For length instead of sum we have A241627.
For leaders of constant runs we have A373952.
The opposite rank statistic is A374630, row-sums of A374629.
The corresponding rank statistic is A374741 row-sums of A374740.
Column k = 3 of A374748.
A003242 counts anti-run compositions.
A011782 counts integer compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#,GreaterEqual]]==3&]],{n,0,15}]
  • PARI
    seq(n)={Vec((2 + x + x^2)/((1 + x + x^2)*(1 + x)*(1 - x)^3) + O(x^(n-2)), -n-1)} \\ Andrew Howroyd, Aug 14 2024

Formula

G.f.: x^3*(2 + x + x^2)/((1 + x + x^2)*(1 + x)*(1 - x)^3). - Andrew Howroyd, Aug 14 2024

Extensions

a(27) onwards from Andrew Howroyd, Aug 14 2024

A373955 Numbers k such that the k-th integer composition in standard order contains two adjacent ones and no other runs.

Original entry on oeis.org

3, 11, 14, 19, 27, 28, 29, 35, 46, 51, 56, 57, 67, 75, 78, 83, 91, 92, 93, 99, 110, 112, 113, 114, 116, 118, 131, 139, 142, 155, 156, 157, 163, 179, 184, 185, 195, 203, 206, 211, 219, 220, 221, 224, 225, 226, 229, 230, 232, 233, 236, 237, 259, 267, 270, 275
Offset: 1

Views

Author

Gus Wiseman, Jun 29 2024

Keywords

Comments

Also numbers k such that the excess compression of the k-th integer composition in standard order is 1.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
postn of 1 in

Examples

			The terms and corresponding compositions begin:
    3: (1,1)
   11: (2,1,1)
   14: (1,1,2)
   19: (3,1,1)
   27: (1,2,1,1)
   28: (1,1,3)
   29: (1,1,2,1)
   35: (4,1,1)
   46: (2,1,1,2)
   51: (1,3,1,1)
   56: (1,1,4)
   57: (1,1,3,1)
   67: (5,1,1)
   75: (3,2,1,1)
   78: (3,1,1,2)
   83: (2,3,1,1)
   91: (2,1,2,1,1)
   92: (2,1,1,3)
   93: (2,1,1,2,1)
   99: (1,4,1,1)
		

Crossrefs

These compositions are counted by A373950.
Positions of ones in A373954.
A003242 counts compressed compositions (or anti-runs).
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 encodes compression using compositions in standard order.
A373949 counts compositions by compression-sum.
A373953 gives compression-sum of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],Total[stc[#]] == Total[First/@Split[stc[#]]]+1&]
Showing 1-7 of 7 results.