A371963
a(n) is the sum of all valleys in the set of Catalan words of length n.
Original entry on oeis.org
0, 0, 0, 0, 1, 8, 44, 209, 924, 3927, 16303, 66691, 270181, 1087371, 4356131, 17394026, 69289961, 275543036, 1094352236, 4342295396, 17218070066, 68239187876, 270351828476, 1070824260326, 4240695090452, 16792454677874, 66492351226050, 263285419856250, 1042540731845950
Offset: 0
a(4) = 1 because there is 1 Catalan word of length 4 with one valley: 0101.
a(5) = 8 because there are 8 Catalan words of length 5 with one valley: 00101, 01010, 01011, 01012, 01101, 01201, and 01212 (see Figure 9 at p. 14 in Baril et al.).
- Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See Corollary 4.5, p. 15.
-
a:= proc(n) option remember; `if`(n<4, 0,
a(n-1)+binomial(2*n-3, n-4))
end:
seq(a(n), n=0..28); # Alois P. Heinz, Apr 15 2024
-
CoefficientList[Series[(1 - 5x+5x^2-(1-3x+x^2)Sqrt[1-4x])/(2(1-x)x Sqrt[1-4x]),{x,0,28}],x]
-
from math import comb
def A371963(n): return sum(comb((n-i<<1)-3,n-i-4) for i in range(n-3)) # Chai Wah Wu, Apr 15 2024
A371964
a(n) is the sum of all symmetric valleys in the set of Catalan words of length n.
Original entry on oeis.org
0, 0, 0, 0, 1, 7, 35, 155, 650, 2652, 10660, 42484, 168454, 665874, 2627130, 10353290, 40775045, 160534895, 631970495, 2487938015, 9795810125, 38576953505, 151957215305, 598732526105, 2359771876175, 9303298456451, 36688955738099, 144732209103699, 571117191135799
Offset: 0
a(4) = 1 because there is 1 Catalan word of length 4 with one symmetric valley: 0101.
a(5) = 7 because there are 7 Catalan words of length 5 with one symmetric valley: 00101, 01001, 01010, 01011, 01012, 01101, and 01212 (see example at p. 16 in Baril et al.).
- Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See Corollary 4.7, pp. 16-17.
-
a:= proc(n) option remember; `if`(n<4, 0,
a(n-1)+binomial(2*n-4, n-4))
end:
seq(a(n), n=0..28); # Alois P. Heinz, Apr 15 2024
-
CoefficientList[Series[(1-4x+2x^2-(1-2x)Sqrt[1-4x])/(2(1-x) Sqrt[1-4x]),{x,0,29}],x]
-
from math import comb
def A371964(n): return sum(comb((n-i<<1)-4,n-i-4) for i in range(n-3)) # Chai Wah Wu, Apr 15 2024
A275289
Number of set partitions of [n] with symmetric block size list of length three.
Original entry on oeis.org
1, 2, 7, 19, 56, 160, 463, 1337, 3874, 11241, 32682, 95172, 277577, 810706, 2370839, 6941473, 20345618, 59692831, 175295996, 515217034, 1515478535, 4460940067, 13140081770, 38729776774, 114221851951, 337050020750, 995097461503, 2939337252651, 8686270661400
Offset: 3
A372883
Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k symmetric peaks, with k >= 0.
Original entry on oeis.org
1, 2, 4, 1, 9, 5, 23, 17, 1, 63, 51, 8, 176, 149, 39, 1, 491, 439, 153, 11, 1362, 1308, 540, 70, 1, 3762, 3912, 1812, 342, 14, 10369, 11671, 5935, 1439, 110, 1, 28559, 34637, 19175, 5541, 645, 17, 78653, 102222, 61302, 20214, 3170, 159, 1, 216638, 300190, 194080, 71242, 13903, 1089, 20
Offset: 1
The irregular triangle begins:
1;
2;
4, 1;
9, 5;
23, 17, 1;
63, 51, 8;
176, 149, 39, 1;
491, 439, 153, 11;
1362, 1308, 540, 70, 1;
3762, 3912, 1812, 342, 14;
...
T(4,1) = 5 since there are 5 flattened Catalan words of length 4 with 1 symmetric peak: 0100, 0101, 0010, 0110, and 0121.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 21-22.
-
T[n_,k_]:=SeriesCoefficient[x(1-x)(1-2x)/(1-5x+8x^2-5x^3-x^2y+2x^3y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,0,Floor[(n-1)/2]}]//Flatten
A377441
Square array T(n, k) read by rising antidiagonals. Row n has the ordinary generating function (-(n*x^3-(n+1)*x^2+x) + sqrt((n*x^3-(n+1)*x^2+x)^2 - 4*(x^3-x^2)*((n+1)*x^2-x)))/(2*(x^3-x^2)).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 6, 14, 1, 1, 2, 7, 21, 42, 1, 1, 2, 8, 30, 78, 132, 1, 1, 2, 9, 41, 136, 299, 429, 1, 1, 2, 10, 54, 222, 630, 1172, 1430, 1, 1, 2, 11, 69, 342, 1221, 2959, 4677, 4862, 1, 1, 2, 12, 86, 502, 2192, 6774, 14058, 18947, 16796, 1, 1, 2, 13, 105, 708, 3687, 14129, 37853, 67472, 77746, 58786, 1, 1, 2, 14, 126, 966, 5874, 27184
Offset: 0
The array begins:
[0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... = A000108
[1] 1, 1, 2, 6, 21, 78, 299, 1172, 4677, ... = A254316
[2] 1, 1, 2, 7, 30, 136, 630, 2959, 14058, ...
[3] 1, 1, 2, 8, 41, 222, 1221, 6774, 37853, ...
[4] 1, 1, 2, 9, 54, 342, 2192, 14129, 91494, ...
[5] 1, 1, 2, 10, 69, 502, 3687, 27184, 201045, ...
Cf.
A000012 (Hankel transform of row 0),
A006720 (Hankel transform of row 1).
Cf.
A330025 (Hankel transform of row -1),
A328380 (Hankel transform of row -2).
A372879
Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k short peak, with k >= 0.
Original entry on oeis.org
1, 2, 4, 1, 9, 5, 22, 18, 1, 56, 58, 8, 145, 178, 41, 1, 378, 532, 173, 11, 988, 1563, 656, 73, 1, 2585, 4535, 2327, 381, 14, 6766, 13030, 7888, 1726, 114, 1, 17712, 37140, 25872, 7124, 709, 17, 46369, 105156, 82758, 27534, 3739, 164, 1, 121394, 296040, 259542, 101350, 17632, 1184, 20
Offset: 1
The irregular triangle begins:
1;
2;
4, 1;
9, 5;
22, 18, 1;
56, 58, 8;
145, 178, 41, 1;
378, 532, 173, 11;
988, 1563, 656, 73, 1;
...
T(6,2) = 8 since there are 8 flattened Catalan words of length 6 with 2 short peaks: 001010, 010100, 010101, 010010, 010120, 010121, 012010, and 012121.
- Jean-Luc Baril, Pamela E. Harris, and José L. Ramírez, Flattened Catalan Words, arXiv:2405.05357 [math.CO], 2024. See pp. 19-20.
-
T[n_,k_]:=SeriesCoefficient[x(1-2x)/((1-x)(1-3x+x^2(1-y))),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,0,Floor[(n-1)/2]}]//Flatten
A377442
Square array read by rising antidiagonals: T(n, k) = A377441(-n, k), an extension of A377441 into the domain of negative n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 4, 14, 1, 1, 2, 3, 9, 42, 1, 1, 2, 2, 6, 22, 132, 1, 1, 2, 1, 5, 12, 57, 429, 1, 1, 2, 0, 6, 6, 26, 154, 1430, 1, 1, 2, -1, 9, -2, 15, 59, 429, 4862, 1, 1, 2, -2, 14, -18, 24, 24, 138, 1223, 16796, 1, 1, 2, -3, 21, -48, 77, -23, 53, 332, 3550, 58786, 1, 1, 2, -4, 30, -98, 222, -226, 102, 107, 814, 10455, 208012, 1, 1, 2
Offset: 0
The array begins:
[ 0] 1, 1, 2, 5, 14, 42, 132, 429, 1430, ... = A000108
[-1] 1, 1, 2, 4, 9, 22, 57, 154, 429, ... = A105633
[-2] 1, 1, 2, 3, 6, 12, 26, 59, 138, ... = A152172
[-3] 1, 1, 2, 2, 5, 6, 15, 24, 53, ...
[-4] 1, 1, 2, 1, 6, -2, 24, -23, 102, ...
[-5] 1, 1, 2, 0, 9, -18, 77, -226, 765, ...
[-6] 1, 1, 2, -1, 14, -48, 222, -921, 3914, ...
[-7] 1, 1, 2, -2, 21, -98, 531, -2756, 14373, ...
Row index written as [m] is corresponding to A377441(m, k).
Cf.
A377441 (The main entry for this sequence).
Cf.
A000012 (Hankel transform of row 0),
A006720 (Hankel transform of row 1).
Cf.
A330025 (Hankel transform of row -1),
A328380 (Hankel transform of row -2).
A377443
Triangular array T(n,k) read by rows, satisfies A377441(n, k+2) = Sum_{m=0..k} T(k, m)*n^m.
Original entry on oeis.org
2, 5, 1, 14, 6, 1, 42, 27, 8, 1, 132, 111, 45, 10, 1, 429, 441, 222, 67, 12, 1, 1430, 1728, 1029, 382, 93, 14, 1, 4862, 6733, 4608, 2005, 599, 123, 16, 1, 16796, 26181, 20199, 10018, 3495, 881, 157, 18, 1, 58786, 101763, 87270, 48445, 19188, 5641, 1236, 195, 20, 1
Offset: 0
Triangle T(n, k) starts:
[0] 2
[1] 5, 1
[2] 14, 6, 1
[3] 42, 27, 8, 1
[4] 132, 111, 45, 10, 1
[5] 429, 441, 222, 67, 12, 1
[6] 1430, 1728, 1029, 382, 93, 14, 1
[7] 4862, 6733, 4608, 2005, 599, 123, 16, 1
[8] 16796, 26181, 20199, 10018, 3495, 881, 157, 18, 1
[9] 58786, 101763, 87270, 48445, 19188, 5641, 1236, 195, 20, 1
-
A377441(n, max_k) = Vec(-2*((n+1)*x-1)/((x-1)*(n*x-1)+((n*x^2-(n+1)*x+1)^2-4*x*(x-1)*((n+1)*x-1)+O(x^max_k))^(1/2)))
T(n, k) = Vec(A377441(y, n+5)[n+3])[n-k+1]
-
A091894(n, k) = 2^(n-2*k-1)*binomial(n-1, 2*k)*(binomial(2*k, k)/(k + 1))
A175136(n, k) = sum(m=0,(n - k)/2,A091894(n-k, m)*binomial(n-m-1, n-k))
T(n, k) = sum(m=1, n+1-k, A175136(n+2-k, n-m+2-k)*binomial(m+k-1, m-1))+(k==0)
Showing 1-8 of 8 results.
Comments