cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132310 a(n) = 3^n*Sum_{ k=0..n } binomial(2*k,k)/3^k.

Original entry on oeis.org

1, 5, 21, 83, 319, 1209, 4551, 17085, 64125, 240995, 907741, 3428655, 12990121, 49370963, 188229489, 719805987, 2760498351, 10615101273, 40920439119, 158106581157, 612166272291, 2374756691313, 9228369037659, 35918537840577
Offset: 0

Views

Author

Paul D. Hanna, Aug 18 2007

Keywords

Comments

Simpler definition from N. J. A. Sloane, Jan 21 2009. Colin Mallows and I studied this sequence on Feb 21 1981 in connection with integration over a regular (solid) hexagon.
Hankel transform is A137717. - Paul Barry, Apr 26 2009

Examples

			a(1) = C(2,1)*(1/1 + 1/2 + 1/1) = 2*(5/2) = 5;
a(2) = C(4,2)*(1/1 + 2/4 + 3/6 + 2/4 + 1/1) = 6*(7/2) = 21;
a(3) = C(6,3)*(1/1 + 3/6 + 6/15 + 7/20 + 6/15 + 3/6 + 1/1) = 20*(83/20) = 83.
2*a(6) = sum(A182411(7,i), i=0..6) = 3432+858+572+572+728+1092+1848 = 9102 = 2*4551. - _Bruno Berselli_, May 02 2012
		

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-10*x+33*x^2-36*x^3], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    a(n)=binomial(2*n,n)*sum(k=0,2*n, polcoeff((1+x+x^2)^n,k)/binomial(2*n,k) )
    
  • PARI
    a(n)=sum(k=0,2*n,polcoeff((1+x+x^2)^n,k) * k!*(2*n-k)! / (n!)^2 )

Formula

a(n) = C(2n,n) * sum_{k=0..2n} trinomial(n,k)/C(2n,k) where trinomial(n,k) = [x^k] (1 + x + x^2)^n, where [x^k] denotes "coefficient of x^k in ...".
G.f.: A(x) = 1/sqrt(1 - 10*x + 33*x^2 - 36*x^3).
a(n) = sum_{k=0..2n} trinomial(n,k) * k!*(2*n-k)! / (n!)^2.
2*a(n) = sum(A182411(n+1,i), i=0..n). - Bruno Berselli, May 02 2012
D-finite with recurrence: n*a(n) = (7*n-2)*a(n-1) - 6*(2*n-1)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 4^(n+1)/sqrt(Pi*n) . - Vaclav Kotesovec, Oct 20 2012

A137718 A scaled Hankel transform.

Original entry on oeis.org

1, -4, 2, 4, -8, 8, 8, -32, 16, 32, -64, 64, 64, -256, 128, 256, -512, 512, 512, -2048, 1024, 2048, -4096, 4096, 4096, -16384, 8192, 16384, -32768, 32768, 32768, -131072, 65536, 131072, -262144, 262144, 262144
Offset: 0

Views

Author

Paul Barry, Feb 08 2008

Keywords

Comments

A137717=2^floor(n/2)*a(n) is the Hankel transform of A106191.

Crossrefs

Cf. A137719.

Formula

a(n)=A137717(n)/2^floor(n/2).
Empirical g.f.: -(4*x^3-4*x^2+4*x-1) / (4*x^4+2*x^2+1). - Colin Barker, Jun 27 2013

A287479 Expansion of g.f. (x + x^2)/(1 + 3*x^2).

Original entry on oeis.org

0, 1, 1, -3, -3, 9, 9, -27, -27, 81, 81, -243, -243, 729, 729, -2187, -2187, 6561, 6561, -19683, -19683, 59049, 59049, -177147, -177147, 531441, 531441, -1594323, -1594323, 4782969, 4782969, -14348907, -14348907, 43046721, 43046721, -129140163, -129140163, 387420489
Offset: 0

Views

Author

Keywords

Comments

This is the inverse binomial transform of A157241.
Successive differences of A157241 begin:
0, 1, 3, 3, -5, -21, -21, 43, 171, 171, ... = A157241
1, 2, 0, -8, -16, 0, 64, 128, 0, -512, ... = A088138
1, -2, -8, -8, 16, 64, 64, -128, -512, -512, ... = A138230
-3, -6, 0, 24, 48, 0, -192, -384, 0, 1536, ...
-3, 6, 24, 24, -48, -192, -192, 384, 1536, 1536, ...
9, 18, 0, -72, -144, 0, 576, 1152, 0, -4608, ...
9, -18, -72 -72, 144, 576, 576, -1152, -4608, -4608, ...
...
a(n) is the n-th term of the first column.
Successive differences of a(n) begin:
0, 1, 1, -3, -3, 9, 9, -27, -27, 81, ...
1, 0, -4, 0, 12, 0, -36, 0, 108, 0, ...
-1, -4, 4, 12, -12, -36, 36, 108, -108, -324, ...
-3, 8, 8, -24, -24, 72, 72, -216, -216, 648, ...
11, 0, -32, 0, 96, 0, -288, 0, 864, 0, ...
-11, -32, 32, 96, -96, -288, 288, 864, -864, -2592, ...
-21, 64, 64, -192, -192, 576, 576, -1728, -1728, 5184, ...
85, 0, -256, 0, 768, 0, -2304, 0, 6912, 0, ...
...
First column appears to be a subsequence of Jacobsthal numbers A001045 (the trisection A082311 is missing), second column is A104538, and third column is A137717.
a(n) = A128019(n-2) for n > 2. - Georg Fischer, Oct 23 2018

Crossrefs

Programs

  • Mathematica
    Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]]
    (* or, computation from b = A157241 : *)
    b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]]
  • PARI
    concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ Felix Fröhlich, Oct 23 2018

Formula

a(n) = -3*a(n-2) for n > 2.
E.g.f.: (1 - cos(sqrt(3)*x) + sqrt(3)*sin(sqrt(3)*x))/3. - Stefano Spezia, Jul 15 2024
Showing 1-3 of 3 results.