cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075181 Coefficients of certain polynomials (rising powers).

Original entry on oeis.org

1, 2, 1, 6, 6, 2, 24, 36, 22, 6, 120, 240, 210, 100, 24, 720, 1800, 2040, 1350, 548, 120, 5040, 15120, 21000, 17640, 9744, 3528, 720, 40320, 141120, 231840, 235200, 162456, 78792, 26136, 5040, 362880, 1451520, 2751840, 3265920, 2693880, 1614816
Offset: 1

Views

Author

Wolfdieter Lang, Sep 19 2002

Keywords

Comments

This is the unsigned triangle A048594 with rows read backwards.
The row polynomials p(n,y) := Sum_{m=0..n-1}a(n,m)*y^m, n>=1, are obtained from (log(x)*(-x*log(x))^n)*(d^n/dx^n)(1/log(x)), n>=1, after replacement of log(x) by y.
The gcd of row n is A075182(n). Row sums give A007840(n), n>=1.
The columns give A000142 (factorials), A001286 (Lah), 2* A075183, 2*A075184, 4*A075185, 4!*A075186, 4!*A075187 for m=0..6.
Coefficients T(n,k) of the differential operator expansion
[x^(1+y)D]^n = x^(n*y)[T(n,1)* (xD)^n / n! + y * T(n,2)* (xD)^(n-1) / (n-1)! + ... + y^(n-1) * T(n,n) * (xD)], where D = d/dx. Note that (xD)^n = Bell(n,:xD:), where (:xD:)^n = x^n * D^n and Bell(n,x) are the Bell / Touchard polynomials. See A094638. - Tom Copeland, Aug 22 2015

Examples

			Triangle starts:
1;
2,1;
6,6,2;
24,36,22,6;
...
n=2: (x^2*log(x)^3)*(d^2/d^x^2)(1/log(x)) = 2 + log(x).
		

Crossrefs

Programs

  • Maple
    seq(seq(k!*abs(Stirling1(n,k)),k=n..1,-1),n=1..10); # Robert Israel, Jul 12 2015
  • Mathematica
    Table[ Table[ k!*StirlingS1[n, k] // Abs, {k, 1, n}] // Reverse, {n, 1, 9}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
  • PARI
    {T(n, k)= if(k<0 || k>=n, 0, (-1)^k* stirling(n, n-k)* (n-k)!)} /* Michael Somos Apr 11 2007 */

Formula

a(n, m) = (n-m)!*|S1(n, n-m)|, n>=m+1>=1, else 0, with S1(n, m) := A008275(n, m) (Stirling1).
a(n, m) = (n-m)*a(n-1, m)+(n-1)*a(n-1, m-1), if n>=m+1>=1, a(n, -1) := 0 and a(1, 0)=1, else 0.