A075196 Table T(n,k) by antidiagonals: T(n,k) = number of partitions of n balls of k colors.
1, 2, 2, 3, 6, 3, 4, 12, 14, 5, 5, 20, 38, 33, 7, 6, 30, 80, 117, 70, 11, 7, 42, 145, 305, 330, 149, 15, 8, 56, 238, 660, 1072, 906, 298, 22, 9, 72, 364, 1260, 2777, 3622, 2367, 591, 30, 10, 90, 528, 2198, 6174, 11160, 11676, 6027, 1132, 42, 11, 110, 735, 3582, 12292, 28784, 42805, 36450, 14873, 2139, 56
Offset: 1
Examples
Square array T(n,k) begins: 1, 2, 3, 4, 5, ... 2, 6, 12, 20, 30, ... 3, 14, 38, 80, 145, ... 5, 33, 117, 305, 660, ... 7, 70, 330, 1072, 2777, ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; local d, j; `if`(n=0, 1, add(add(d*binomial(d+k-1, k-1), d=divisors(j)) *A(n-j, k), j=1..n)/n) end: seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Sep 26 2012
-
Mathematica
Transpose[Table[nn=6;p=Product[1/(1- x^i)^Binomial[i+n,n],{i,1,nn}];Drop[CoefficientList[Series[p,{x,0,nn}],x],1],{n,0,nn}]]//Grid (* Geoffrey Critzer, Sep 27 2012 *)
Formula
T(n,k) = Sum_{i=0..k} C(k,i) * A255903(n,i). - Alois P. Heinz, Mar 10 2015
Comments