A075226 Largest prime in the numerator of the 2^n sums generated from the set 1, 1/2, 1/3,..., 1/n.
3, 11, 19, 137, 137, 1019, 2143, 7129, 7129, 78167, 81401, 1085933, 1111673, 1165727, 2364487, 41325407, 41325407, 796326437, 809074601, 812400209, 822981689, 19174119571, 19652175721, 99554817251, 100483070801
Offset: 2
Examples
a(3) =11 because 11 is largest prime numerator in the three sums that yield primes: 1+1/2 = 3/2, 1/2+1/3 = 5/6 and 1+1/2+1/3 = 11/6.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..441 (terms 2..100 from Martin Fuller)
- Martin Fuller, PARI program
Programs
-
Haskell
import Data.Ratio (numerator) a075226 n = a075226_list !! (n-1) a075226_list = f 2 [recip 1] where f x hs = (maximum $ filter ((== 1) . a010051') (map numerator hs')) : f (x + 1) hs' where hs' = hs ++ map (+ recip x) hs -- Reinhard Zumkeller, May 28 2013
-
Mathematica
Needs["DiscreteMath`Combinatorica`"]; maxN=20; For[t={}; lst={}; mx=0; i=0; n=2, n<=maxN, n++, While[i<2^n-1, i++; s=NthSubset[i, Range[n]]; k=Numerator[Plus@@(1/s)]; If[PrimeQ[k], If[k>mx, t=s]; mx=Max[mx, k]]]; Print[n, " ", t]; AppendTo[lst, mx]]; lst Table[Max[Select[Numerator[Total/@Subsets[1/Range[n],{2,2^n}]],PrimeQ]],{n,2,30}] (* The program will take a long time to run. *) (* Harvey P. Dale, Jan 08 2019 *)
-
PARI
See Fuller link.
-
Python
from math import gcd, lcm from itertools import combinations from sympy import isprime def A075226(n): m = lcm(*range(1,n+1)) c, mlist = 0, tuple(m//i for i in range(1,n+1)) for l in range(n,-1,-1): if sum(mlist[:l]) < c: break for p in combinations(mlist,l): s = sum(p) s //= gcd(s,m) if s > c and isprime(s): c = s return c # Chai Wah Wu, Feb 14 2022
Extensions
More terms from Martin Fuller, Jan 19 2008
Comments