cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075266 Numerator of the coefficient of x^n in log(-log(1-x)/x).

Original entry on oeis.org

0, 1, 5, 1, 251, 19, 19087, 751, 1070017, 2857, 26842253, 434293, 703604254357, 8181904909, 1166309819657, 5044289, 8092989203533249, 5026792806787, 12600467236042756559, 69028763155644023, 8136836498467582599787
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2002

Keywords

Comments

A series with these numerators leads to Euler's constant: gamma = 1 - 1/4 - 5/72 - 1/32 - 251/14400 - 19/1728 - 19087/2540160 - ..., see references [Blagouchine] below, as well as A262235. - Iaroslav V. Blagouchine, Sep 15 2015

Crossrefs

Cf. A053657, A075264, A075267 (denominator), A262235.

Programs

  • Maple
    S:= series(log(-log(1-x)/x),x,51):
    seq(numer(coeff(S,x,j)),j=0..50); # Robert Israel, May 17 2016
    # Alternative:
    a := proc(n) local r; r := proc(n) option remember; if n=0 then 1 else
    1 - add(r(k)/(n-k+1), k=0..n-1) fi end: numer(r(n)/(n*(n+1))) end:
    seq(a(n), n=0..20); # Peter Luschny, Apr 19 2018
  • Mathematica
    Numerator[ CoefficientList[ Series[ Log[ -Log[1 - x]/x], {x, 0, 20}], x]]
  • SageMath
    @cached_function
    def r(n): return 1 - sum(r(k)/(n-k+1) for k in range(n)) if n > 0 else 1
    def a(n: int): return numerator(r(n)/(n*(n+1))) if n > 0 else 0
    print([a(n) for n in range(21)])  # Peter Luschny, Aug 15 2025

Formula

a(n) = numerator(Sum_{k=1..n} (k-1)!*(-1)^(n-k-1)*binomial(n,k)*Stirling1(n+k,k)/(n+k)!). - Vladimir Kruchinin, Aug 14 2025

Extensions

Edited by Robert G. Wilson v, Sep 17 2002
a(0) = 0 prepended by Peter Luschny, Aug 15 2025