cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075300 Array A read by antidiagonals upwards: A(n, k) = array A054582(n,k) - 1 = 2^n*(2*k+1) - 1 with n,k >= 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 7, 11, 9, 6, 15, 23, 19, 13, 8, 31, 47, 39, 27, 17, 10, 63, 95, 79, 55, 35, 21, 12, 127, 191, 159, 111, 71, 43, 25, 14, 255, 383, 319, 223, 143, 87, 51, 29, 16, 511, 767, 639, 447, 287, 175, 103, 59, 33, 18, 1023, 1535, 1279, 895, 575, 351, 207, 119
Offset: 0

Views

Author

Antti Karttunen, Sep 12 2002

Keywords

Comments

From Philippe Deléham, Feb 19 2014: (Start)
A(0,k) = 2*k = A005843(k),
A(1,k) = 4*k + 1 = A016813(k),
A(2,k) = 8*k + 3 = A017101(k),
A(n,0) = A000225(n),
A(n,1) = A153893(n),
A(n,2) = A153894(n),
A(n,3) = A086224(n),
A(n,4) = A052996(n+2),
A(n,5) = A086225(n),
A(n,6) = A198274(n),
A(n,7) = A238087(n),
A(n,8) = A198275(n),
A(n,9) = A198276(n),
A(n,10) = A171389(n). (End)
A permutation of the nonnegative integers. - Alzhekeyev Ascar M, Jun 05 2016
The values in array row n, when expressed in binary, have n trailing 1-bits. - Ruud H.G. van Tol, Mar 18 2025

Examples

			The array A begins:
   0    2    4    6    8   10   12   14   16   18 ...
   1    5    9   13   17   21   25   29   33   37 ...
   3   11   19   27   35   43   51   59   67   75 ...
   7   23   39   55   71   87  103  119  135  151 ...
  15   47   79  111  143  175  207  239  271  303 ...
  31   95  159  223  287  351  415  479  543  607 ...
  ... - _Philippe Deléham_, Feb 19 2014
From _Wolfdieter Lang_, Jan 31 2019: (Start)
The triangle T begins:
   n\k   0    1    2   3   4   5   6   7  8  9 10 ...
   0:    0
   1:    1    2
   2:    3    5    4
   3:    7   11    9   6
   4:   15   23   19  13   8
   5    31   47   39  27  17  10
   6:   63   95   79  55  35  21  12
   7:  127  191  159 111  71  43  25  14
   8:  255  383  319 223 143  87  51  29 16
   9:  511  767  639 447 287 175 103  59 33 18
  10: 1023 1535 1279 895 575 351 207 119 67 37 20
  ...
T(3, 1) = 2^2*(2*1+1) - 1 = 12 - 1 = 11.  (End)
		

Crossrefs

Inverse permutation: A075301. Transpose: A075302. The X-projection is given by A007814(n+1) and the Y-projection A025480.

Programs

  • Maple
    A075300bi := (x,y) -> (2^x * (2*y + 1))-1;
    A075300 := n -> A075300bi(A025581(n), A002262(n));
    A002262 := n -> n - binomial(floor((1/2)+sqrt(2*(1+n))),2);
    A025581 := n -> binomial(1+floor((1/2)+sqrt(2*(1+n))),2) - (n+1);
  • Mathematica
    Table[(2^# (2 k + 1)) - 1 &[m - k], {m, 0, 10}, {k, 0, m}] (* Michael De Vlieger, Jun 05 2016 *)

Formula

From Wolfdieter Lang, Jan 31 2019: (Start)
Array A(n, k) = 2^n*(2*k+1) - 1, for n >= 0 and m >= 0.
The triangle is T(n, k) = A(n-k, k) = 2^(n-k)*(2*k+1) - 1, n >= 0, k=0..n.
See also A054582 after subtracting 1. (End)
From Ruud H.G. van Tol, Mar 17 2025: (Start)
A(0, k) is even. For n > 0, A(n, k) is odd and (3 * A(n, k) + 1) / 2 = A(n-1, 3*k+1).
A(n, k) = 2^n - 1 (mod 2^(n+1)) (equivalent to the comment about trailing 1-bits). (End)