A075363 Triangle read by rows, in which n-th row gives n smallest powers of n.
1, 2, 4, 3, 9, 27, 4, 16, 64, 256, 5, 25, 125, 625, 3125, 6, 36, 216, 1296, 7776, 46656, 7, 49, 343, 2401, 16807, 117649, 823543, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000
Offset: 1
Examples
From _Felix Fröhlich_, Sep 15 2019: (Start) Triangle begins: 1; 2, 4; 3, 9, 27; 4, 16, 64, 256; 5, 25, 125, 625, 3125; 6, 36, 216, 1296, 7776, 46656; 7, 49, 343, 2401, 16807, 117649, 823543; 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216; 9, 81, 729, 6561, 59049, 531441, 4782969, 43046721, 387420489; (End)
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of triangle, flattened).
Programs
-
Mathematica
Array[#^Range[#] &, 10] (* Paolo Xausa, Jun 09 2025 *)
-
PARI
row(n) = for(k=1, n, print1(n^k, ", ")) trianglerows(n) = for(x=1, n, row(x); print("")) /* Print initial 10 rows as follows: */ trianglerows(10) \\ Felix Fröhlich, Sep 15 2019
-
Python
from math import isqrt, comb def A075363(n): return (isqrt(n<<3)+1>>1)**(n-comb((m:=isqrt(k:=n<<1))+(k>m*(m+1)),2)) # Chai Wah Wu, Jun 08 2025
Formula
T(n, k) = n^k, 1<=k<=n.
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
More terms from Michel Marcus, Sep 15 2019
Comments