A075368 Smallest integer value of lcm(n+1, n+2, ..., n+k) (for k >= 0) divided by the product of all the primes up to n.
1, 6, 10, 5, 84, 84, 1716, 858, 286, 286, 100776, 100776, 891480, 891480, 891480, 445740, 282861360, 282861360, 550835280, 550835280, 550835280, 550835280, 42222721680, 42222721680, 8444544336, 8444544336, 2814848112, 2814848112
Offset: 1
Examples
a(3) = 10 as the product of primes <= (n = 3) is 6 and the smallest integer of the form lcm(3+1, 3+2, ..., 3+k) = lcm(4, 5, 6) = 60 giving a(3) = 60/6 = 10. - _David A. Corneth_, Dec 05 2023
Links
- David A. Corneth, Table of n, a(n) for n = 1..2236
Programs
-
Mathematica
a75365[n_] := Module[{div, k, pr}, div=Times@@Prime/@Range[PrimePi[n]]; For[k=0; pr=1, True, k++; pr*=n+k, If[Mod[pr, div]==0, Return[k]]]]; a[1]=1; a[n_] := LCM@@Range[n+1, n+a75365[n]]/Times@@Prime/@Range[PrimePi[n]]
-
PARI
a(n) = {if(n==1, return(1)); my(pp = vecprod(primes(primepi(n))), l = n+1); for(k = n+2, 2*n, l = lcm(l, k); if(l%pp == 0, return(l\pp) ) ) } \\ David A. Corneth, Dec 05 2023
Extensions
Edited by Dean Hickerson, Oct 28 2002