A075412 Squares of A002277.
0, 9, 1089, 110889, 11108889, 1111088889, 111110888889, 11111108888889, 1111111088888889, 111111110888888889, 11111111108888888889, 1111111111088888888889, 111111111110888888888889, 11111111111108888888888889, 1111111111111088888888888889, 111111111111110888888888888889
Offset: 0
Examples
a(2) = 33^2 = 1089. Contribution from _Reinhard Zumkeller_, May 31 2010: (Start) n=1: ...................... 9 = 9 * 1; n=2: ................... 1089 = 99 * 11; n=3: ................. 110889 = 999 * 111; n=4: ............... 11108889 = 9999 * 1111; n=5: ............. 1111088889 = 99999 * 11111; n=6: ........... 111110888889 = 999999 * 111111; n=7: ......... 11111108888889 = 9999999 * 1111111; n=8: ....... 1111111088888889 = 99999999 * 11111111; n=9: ..... 111111110888888889 = 999999999 * 111111111. (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Gérard Villemin, Variations sur les carrés.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{11, -10}, {0, 3}, 20]^2 (* Vincenzo Librandi, Mar 20 2014 *) Table[FromDigits[PadRight[{},n,9]]FromDigits[PadRight[{},n,1]],{n,0,15}] (* Harvey P. Dale, Feb 12 2023 *)
Formula
a(n) = {111111... (2n times)} - 2*{ 111... (n times)} a(n) = A000042(2*n) - 2*A000042(n). - Amarnath Murthy, Jul 21 2003
a(n) = {333... (n times)}^2 = {111...(n times)}{000... (n times)} - {111... (n times)}. For example, 333^2 = 111000 - 111 = 110889. - Kyle D. Balliet, Mar 07 2009
From Reinhard Zumkeller, May 31 2010: (Start)
a(n) = (10^(n+1)-10)^2/900. - José de Jesús Camacho Medina, Apr 01 2016
From Elmo R. Oliveira, Jul 27 2025: (Start)
G.f.: 9*x*(1+10*x)/((1-x)*(1-10*x)*(1-100*x)).
E.g.f.: exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 9*A002477(n). (End)
Comments