A075432 Primes with no squarefree neighbors.
17, 19, 53, 89, 97, 127, 149, 151, 163, 197, 199, 233, 241, 251, 269, 271, 293, 307, 337, 349, 379, 449, 487, 491, 521, 523, 557, 577, 593, 631, 701, 727, 739, 751, 773, 809, 811, 881, 883, 919, 953, 991, 1013, 1049, 1051, 1061, 1063, 1097, 1151, 1171, 1249
Offset: 1
Keywords
Examples
p = 17 is a term because 16 = 4^2 and 18=2*3^2 are divisible by squares > 1. - _N. J. A. Sloane_, Jul 19 2024
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Pieter Moree, Artin's primitive root conjecture -a survey -, arXiv:math/0412262 [math.NT], 2004-2012.
- Carlos Rivera, Conjecture 65. Non-Euclidean primes, The Prime Puzzles and Problems Connection.
Crossrefs
Programs
-
Haskell
a075432 n = a075432_list !! (n-1) a075432_list = f [2, 4 ..] where f (u:vs@(v:ws)) | a008966 v == 1 = f ws | a008966 u == 1 = f vs | a010051' (u + 1) == 0 = f vs | otherwise = (u + 1) : f vs -- Reinhard Zumkeller, May 04 2013
-
Maple
filter:= n -> isprime(n) and not numtheory:-issqrfree(n+1) and not numtheory:-issqrfree(n-1): select(filter, [seq(2*i+1, i=1..1000)]); # Robert Israel, Aug 27 2014
-
Mathematica
lst={}; Do[p=Prime[n]; If[ !SquareFreeQ[Floor[p-1]] && !SquareFreeQ[Floor[p+1]], AppendTo[lst,p]], {n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 20 2008 *) Select[Prime[Range[300]],!SquareFreeQ[#-1]&&!SquareFreeQ[#+1]&] (* Harvey P. Dale, Apr 24 2014 *)
-
PARI
is(n)=!issquarefree(if(n%4==1, n+1, n-1)) && isprime(n) \\ Charles R Greathouse IV, Aug 27 2014
Formula
a(n) ~ Cn log n, where C = 1/(1 - 2A) = 1/(1 - Product_{p>2 prime} (1 - 1/(p^2-p))), where A is the constant in A005596. - Charles R Greathouse IV, Aug 27 2014
Extensions
More terms (that were already in the b-file) from Jeppe Stig Nielsen, Apr 23 2020
Comments