cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075462 a(n) is the number of solutions to the all-ones lights out problem on an n X n square.

Original entry on oeis.org

1, 1, 1, 16, 4, 1, 1, 1, 256, 1, 64, 1, 1, 16, 1, 256, 4, 1, 65536, 1, 1, 1, 16384, 16, 1, 1, 1, 1, 1024, 1048576, 1, 1048576, 65536, 16, 64, 1, 1, 1, 4294967296, 1, 4, 1, 1, 16, 1, 1, 1073741824, 1, 256, 256, 1, 1, 4, 16, 1, 1, 1, 1, 4194304, 1, 1099511627776, 16777216
Offset: 1

Views

Author

Eric W. Weisstein, Sep 17 2002

Keywords

Comments

In these counts, nonidentical reflected and rotated solutions are considered distinct.

References

  • Caro, Y., Simple proofs to three parity theorems, Ars Combin. 42 (1996), 175-180.
  • Conlon, M. M.; Falidas, M.; Forde, M. J.; Kennedy, J. W.; McIlwaine, S.; and Stern, J., Inversion numbers of graphs, Graph Theory Notes New York 37 (1999), 42-48.
  • Cowen, R.; Hechler, S. H.; Kennedy, J. W.; and Ryba, A., Inversion and neighborhood inversion in graphs, Graph Theory Notes New York 37 (1999), 37-41.
  • Cowen, R. and Kennedy, J., The Lights Out puzzle, Math. Educ. Res. 9 (2000), 28-32.
  • Goldwasser, J. and Klostermeyer, W., Maximization versions of 'Lights Out' games in grids and graphs, Congr. Numer. 126 (1997), 99-111.
  • K. Sutner, Linear cellular automata and the Garden-of-Eden, Math. Intelligencer 11 (1989), 49-53.

Crossrefs

Programs

  • Mathematica
    m[k_] := SparseArray[ {Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {k, k}]; b[k_, 0] := SparseArray[ Band[{1, 1}] -> 1, {k, k}]; b[k_, 1] := m[k]; b[k_, n_] := b[k, n] = Mod[m[k].b[k, n-1] + b[k, n-2], 2]; A159257[n_] := First[ Dimensions[ NullSpace[b[n, n], Modulus -> 2]]]; A159257[1] = 0; a[n_] := 2^A159257[n]; Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Oct 10 2012, after Max Alekseyev and Birkas Gyorgy *)

Formula

a(n) = 2^A159257(n). - Max Alekseyev, Sep 17 2009

Extensions

More terms from Max Alekseyev, Sep 17 2009, and Thomas Buchholz, May 16 2014