cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A076436 Square board sizes for which the lights-out problem has a unique solution (counting solutions differing only by rotation and reflection as distinct).

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 10, 12, 13, 15, 18, 20, 21, 22, 25, 26, 27, 28, 31, 36, 37, 38, 40, 42, 43, 45, 46, 48, 51, 52, 55, 56, 57, 58, 60, 63, 66, 68, 70, 72, 73, 75, 76, 78, 80, 81, 82, 85, 86, 87, 88, 90, 91, 93, 96, 97, 100, 102, 103, 105, 106, 108, 110, 111, 112, 115, 116, 117, 120
Offset: 1

Views

Author

Eric W. Weisstein, Oct 11 2002

Keywords

Comments

These are also the boards where any starting configuration can be turned off. - Robert Cowen (robert.cowen(AT)gmail.com), Jan 06 2007. [Comment corrected by Sune Kristian Jakobsen (sunejakobsen(AT)hotmail.com), Feb 04 2008]

Crossrefs

Cf. A075462, A076437, A117872. Complement of A117870.

Formula

Positive integer n is in this sequence iff A159257(n)=0. [Max Alekseyev, Sep 25 2009]

Extensions

More terms from N. J. A. Sloane (based on A117870), May 14 2006, and Thomas Buchholz, May 16 2014

A159257 Rank deficiency of the Lights Out problem of size n.

Original entry on oeis.org

0, 0, 0, 4, 2, 0, 0, 0, 8, 0, 6, 0, 0, 4, 0, 8, 2, 0, 16, 0, 0, 0, 14, 4, 0, 0, 0, 0, 10, 20, 0, 20, 16, 4, 6, 0, 0, 0, 32, 0, 2, 0, 0, 4, 0, 0, 30, 0, 8, 8, 0, 0, 2, 4, 0, 0, 0, 0, 22, 0, 40, 24, 0, 28, 42, 0, 32, 0, 8, 0, 14, 0, 0, 4, 0, 0, 2, 0, 64, 0, 0, 0, 6, 12, 0, 0, 0, 0, 10, 0, 0, 20, 0, 4, 62, 0, 0, 20, 16, 0, 18, 0, 0, 4, 0, 0, 6, 0, 8, 0, 0, 0, 2, 4, 0, 0, 0, 8, 46, 0, 0, 0, 80, 4, 50, 56, 0, 56, 56, 0
Offset: 1

Views

Author

Bruno Vallet (bruno.vallet(AT)gmail.com), Apr 07 2009

Keywords

Comments

A square array of n X n pixels can have two states (gray, red). Touching a pixel switches its state and the state of the adjacent pixels. The general problem is to turn all pixels ON given any initial configuration. It requires inverting a n^2 by n^2 matrix in Z/2Z. The sequence is the rank deficiency (corank) of the matrix, such that the zero terms correspond to the sizes for which the general case admits a solution.
The size 5 game can be played at the link given below. Rank deficiency is 2 for that game, but only initial configurations that admit a solution are given.
a(n) is nonzero iff n is in A117870; a(n) is zero iff n is in A076436. - Max Alekseyev, Sep 17 2009
a(n) is even and satisfies a(n) <= n. - Thomas Buchholz, May 19 2014
For all indices n and natural numbers k, a(n*k - 1) >= a(n - 1). - William Boyles, Jun 17 2022

Examples

			For n=2, matrix is [1 1 1 0][1 1 0 1][1 0 1 1][0 1 1 1] which is of full rank.
		

References

Crossrefs

Programs

  • Mathematica
    Table[First[Dimensions[NullSpace[AdjacencyMatrix[GridGraph[{n, n}]] + IdentityMatrix[n*n],Modulus -> 2]]], {n, 2, 30}]
    (* Or Faster *)
    A[k_] := DiagonalMatrix[Array[1 &, k - 1], -1] +
      DiagonalMatrix[Array[1 &, k - 1], 1] + IdentityMatrix[k];
    B[k_, 0] := IdentityMatrix[k];
    B[k_, 1] := A[k];
    B[k_, n_] := B[k, n] = Mod[A[k].B[k, n - 1] + B[k, n - 2], 2];
    Table[First[Dimensions[NullSpace[B[n, n], Modulus -> 2]]], {n, 2, 30}]
    (* Birkas Gyorgy, Jun 10 2011 *)
  • PARI
    { A159257(n) = my(p,q,r); p=Mod(1,2); q=p*x;for(u=2,n,r=x*q+p;p=q;q=r); p=subst(q,x,1+x); r=gcd(p,q); poldegree(r) } \\ Zhao Hui Du, Mar 18 2014
    
  • PARI
    { A159257(n) = my(f = polchebyshev(n,2,x/2)*Mod(1,2)); poldegree( gcd(f,subst(f,x,1+x)) ); } \\ Max Alekseyev, Nov 12 2019

Formula

Let f(k,x) = U(k,x/2), where U(k,x) is the k-th Chebyshev polynomial of the second kind over the field GF(2). So f(0,x)=1, f(1,x)=x, f(2,x)=(1+x)^2, and f(n+1,x)=x*f(n,x)+f(n-1,x). Then a(n) equals the degree of gcd(f(n,x), f(n,1+x)). For example, f(5,x)=x^5+x=x(1+x)^4 and f(5, 1+x)=x^4(1+x). So their GCD is x(1+x) and the degree is 2, that is a(5)=2. - Zhao Hui Du, Mar 17 2014; edited by Max Alekseyev, Nov 12 2019

Extensions

More terms from Max Alekseyev, Sep 17 2009
More terms from Thomas Buchholz, May 16 2014

A117870 Square board sizes for which the lights out problem does not have a unique solution (counting solutions differing only by rotation and reflection as distinct).

Original entry on oeis.org

4, 5, 9, 11, 14, 16, 17, 19, 23, 24, 29, 30, 32, 33, 34, 35, 39, 41, 44, 47, 49, 50, 53, 54, 59, 61, 62, 64, 65, 67, 69, 71, 74, 77, 79, 83, 84, 89, 92, 94, 95, 98, 99, 101, 104, 107, 109, 113, 114, 118, 119, 123, 124, 125, 126, 128, 129, 131, 134, 135, 137, 139, 143
Offset: 1

Views

Author

N. J. A. Sloane, May 14 2006

Keywords

Comments

Numbers k such that a k X k parity pattern exists (see A118141). - Don Knuth, May 11 2006

Crossrefs

Cf. A075462, A076437, A117872. Complement of A076436.

Formula

a(n) = A093614(n) - 1.
Contains positive integers k such that A159257(k) > 0. - Max Alekseyev, Sep 17 2009

Extensions

More terms from Max Alekseyev, Sep 17 2009, and Thomas Buchholz, May 16 2014

A075464 a(n) is the minimal number of nontrivial switch flippings needed to solve the all-ones lights out problem on an n X n square.

Original entry on oeis.org

1, 4, 5, 4, 15, 28, 33, 40, 25, 44, 55, 72, 105, 56, 117, 104, 147, 188, 141, 224, 245, 276, 231, 270, 353, 356, 405, 416, 345, 376, 553, 428, 469, 520, 563, 600, 761, 772, 561, 696, 891, 940, 953, 772, 1069, 1188, 971, 1096, 1165, 1220, 1317, 1256, 1487, 1400
Offset: 1

Views

Author

Eric W. Weisstein, Sep 17 2002

Keywords

Comments

For squares having multiple possible solutions (see A075462, A075463), there may be nontrivial solutions involving *more* than this number of flips.

References

Crossrefs

Extensions

a(26)-a(29) from Les Reid, Sep 09 2007
a(30)-a(38) from Max Alekseyev, Sep 17 2009
Extended by Max Alekseyev, Sep 20 2009

A075463 a(n) is the number of rotation-reflection inequivalent solutions to the all-ones lights out problem on an n X n square.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, 43, 1, 10, 1, 1, 5, 1, 43, 1, 1, 8356, 1, 1, 1, 2080, 5, 1, 1, 1, 1, 136, 131720, 1, 131720, 8356, 5, 10, 1, 1, 1, 536911936, 1, 1, 1, 1, 5, 1, 1, 134225920, 1, 43, 43, 1, 1, 1, 5, 1, 1, 1, 1, 524800, 1, 137439609088, 2099728, 1, 33564704, 549756338176, 1, 536911936, 1, 43, 1, 2080, 1, 1, 5, 1, 1, 1, 1, 2305843011898064896
Offset: 1

Views

Author

Eric W. Weisstein, Sep 17 2002

Keywords

Comments

Reflected and rotated solutions are considered identical.

References

Crossrefs

Programs

  • Mathematica
    a[n_, i_, j_ ] := Table[If[Total[Abs[{i, j} - {r, s}]] <= 1, 1, 0], {r, n}, {s, n}] //Flatten
    a[n_, k_ ] := a[n, Quotient[k + n - 1, n], Mod[k, n, 1]]
    m[n_ ] := a[n, # ] & /@ Range[n^2]
    ker[n_ ] := NullSpace[m[n], Modulus -> 2]
    b[n_ ] := Table[1, {n^2}]
    sol[n_ ] := LinearSolve[m[n], b[n], Modulus -> 2];
    allSolutions[n_ ] := Module[{s, k},
    s = sol[n];
    k = ker[n];
    Mod[(s + # ) & /@ (Total[(#*k)] & /@ Tuples[{0, 1}, Length[k]]), 2]
    ] //Sort
    MatrixRotate[m_ ] := Transpose[Reverse[m]]
    MatrixRotate[m_, n_ ] := Nest[MatrixRotate, m, Mod[n, 4]]
    DihedralOrbit[m_ ] := Union@Join[
    MatrixRotate[m, # ] & /@ Range[0, 3],
    MatrixRotate[Reverse[m], # ] & /@ Range[0, 3]
    ]
    essentialSolutions[n_ ] := Module[{as},
    as = Partition[ #, n] & /@ allSolutions[n];
    Union[as, SameTest -> (MemberQ[DihedralOrbit[ #1], #2] &)]
    ]
    Length[essentialSolutions[ # ]] & /@ Range[16]
    (* Jacob A. Siehler *)
  • PARI
    H(n)={
       my(r);
       r=matrix(n,n,X,Y,Mod(0,2));
       for(u=1,n,r[u,u]=Mod(1,2));
       for(u=1,n-1,r[u,u+1]=Mod(1,2);r[u+1,u]=Mod(1,2));
       r
    }
    E(n)={
       my(r);
       r=matrix(n,n,X,Y,Mod(0,2));
       for(u=1,n,r[u,u]=Mod(1,2));
       r
    }
    b(n)={
       vector(n,X,Mod(1,2))~
    }
    a(n)={
       my(x0,x1,tmp,y,z,mH,vb,v0,v1,yb,zb);
       my(A159257,A075462,A075463,a2,a3,a4,a5,tm,tb);
       x0=E(n);mH=H(n);x1=mH;vb=b(n);
       y=matrix(n,n);yb=vector(n);
       z=matrix(n,n);zb=vector(n);
       v0=vb;v1=mH*vb+v0;
       y[1,]=x0[1,];yb[1]=Mod(0,2);
       y[2,]=x1[1,];yb[2]=v0[1];
       z[1,]=x0[n,];zb[1]=Mod(0,2);
       z[2,]=x1[n,];zb[2]=v0[n];
       for(u=2,n-1,
          tmp=mH*x1+x0;x0=x1;x1=tmp;
          y[u+1,]=x1[1,];z[u+1,]=x1[n,];
          tmp=mH*v1+v0+vb;v0=v1;v1=tmp;
          yb[u+1]=v0[1];zb[u+1]=v0[n]
       );
       x1=mH*x1+x0;
       A159257 = n-matrank(x1);
       A075462=2^A159257;
       tm=matrix(2*n,n,X,Y,Mod(0,2));tb=vector(2*n,X,Mod(0,2))~;
       for(u=1,n,tm[u,]=x1[u,];tb[u]=v1[u]);
       for(u=1,n,
           tm[n+u,u]=Mod(1,2);tm[n+u,n-u+1]+=Mod(1,2);tb[n+u]=Mod(0,2)
       );
       a2=matinverseimage(tm,tb);
       if(length(a2)==0, a2=0, a2=2^(n-matrank(tm)));
       for(u=1,n,tm[n+u,]=y[u,];tb[n+u]=yb[u];tm[n+u,u]+=Mod(1,2));
       a3=matinverseimage(tm,tb);
       if(length(a3)==0, a3=0, a3=2^(n-matrank(tm)));
       for(u=1,n,tm[n+u,]=y[n+1-u,];tb[n+u]=yb[n+1-u];tm[n+u,u]+=Mod(1,2));
       a4=matinverseimage(tm,tb);
       if(length(a4)==0, a4=0, a4=2^(n-matrank(tm)));
       for(u=1,n,tm[n+u,]=y[u,]+z[n+1-u,];tb[n+u]=yb[u]+zb[n+1-u]);
       a5=matinverseimage(tm,tb);
       if(length(a5)==0, a5=0, a5=2^(n-matrank(tm)));
       A075463=(A075462+2*(a2+a3+a4)+a5)/8
    } \\ Zhao Hui Du, Mar 29 2014

Extensions

a(19)-a(29) from Jacob A. Siehler, Apr 29 2008
Terms a(30) and beyond from Zhao Hui Du, Mar 24 2014

A165738 Rank deficiency (= dimension of the null space) of the n X n "Lights Out" puzzle on a torus.

Original entry on oeis.org

0, 0, 4, 0, 8, 8, 0, 0, 4, 16, 0, 16, 0, 0, 12, 0, 16, 8, 0, 32, 4, 0, 0, 32, 8, 0, 4, 0, 0, 24, 40, 0, 44, 32, 8, 16, 0, 0, 4, 64, 0, 8, 0, 0, 12, 0, 0, 64, 0, 16, 20, 0, 0, 8, 8, 0, 4, 0, 0, 48, 0, 80, 52, 0, 56, 88, 0, 64, 4, 16, 0, 32, 0, 0, 12, 0, 0, 8, 0, 128, 4, 0, 0, 16, 24, 0, 4, 0, 0, 24
Offset: 1

Views

Author

Max Alekseyev, Sep 25 2009

Keywords

Comments

The number of solutions to the puzzle is 2^a(n). If a(n)=0 then the puzzle has a unique solution.

References

  • See A075462 for further references.

Crossrefs

Cf. A159257.

Formula

a(n) <= 2n.
a(n) is a multiple of 4 and satisfies a(2n) = 2a(n). a(n+1) = 2 * A159257(n) + 4 if n = 2 (mod 3) and a(n+1) = 2 * A159257(n) otherwise. - Thomas Buchholz, May 22 2014

Extensions

More terms from Thomas Buchholz, May 20 2014

A165740 Positive integers n such that solution to the toric n X n "Lights Out" puzzle is not unique (up to the order of flippings; each flipping appears at most once).

Original entry on oeis.org

3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 21, 24, 25, 27, 30, 31, 33, 34, 35, 36, 39, 40, 42, 45, 48, 50, 51, 54, 55, 57, 60, 62, 63, 65, 66, 68, 69, 70, 72, 75, 78, 80, 81, 84, 85, 87, 90, 93, 95, 96, 99, 100, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 123, 124, 125, 126
Offset: 1

Views

Author

Max Alekseyev, Sep 25 2009

Keywords

Comments

Complement to the sequence A165741 in the set of positive integers.
Any positive multiple of a member of this sequence is also a member. Primitive elements are in A007802. - Thomas Buchholz, May 23 2014

References

Crossrefs

Formula

A number n is in this sequence iff A165738(n) > 0.

Extensions

More terms from Thomas Buchholz, May 20 2014

A165741 Positive integers n such that the toric n X n "Lights Out" puzzle has a unique solution (up to the order of flippings; each flipping appears at most once).

Original entry on oeis.org

1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 22, 23, 26, 28, 29, 32, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 64, 67, 71, 73, 74, 76, 77, 79, 82, 83, 86, 88, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 121, 122, 128, 131, 133, 134, 137
Offset: 1

Views

Author

Max Alekseyev, Sep 25 2009

Keywords

Comments

Complement to the sequence A165740 in the set of positive integers.

References

Crossrefs

Formula

n is in this sequence iff A165738(n)=0.

Extensions

More terms from Thomas Buchholz, May 20 2014

A144260 Number of symmetric n X n binary matrices with each element equal to one minus the sum of its horizontal and vertical neighbors, modulo two.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 1, 1, 16, 1, 8, 1, 1, 4, 1, 16, 2, 1, 256, 1, 1, 1, 128, 4, 1, 1, 1, 1
Offset: 1

Views

Author

R. H. Hardin, Sep 16 2008

Keywords

Comments

A075462 is a(n) without the symmetry restriction.

A137619 a(n) is the maximal (nonredundant) number of switch flippings in a solution of the all-ones lights out problem on an n X n square.

Original entry on oeis.org

1, 4, 5, 12, 15, 28, 33, 40, 55, 44, 71, 72, 105, 96, 117, 152, 147, 188, 225, 224, 245, 276, 299, 306, 353, 356, 405, 416, 451
Offset: 1

Views

Author

Jacob A. Siehler, Apr 27 2008

Keywords

References

Crossrefs

Cf. A075464.
Showing 1-10 of 10 results.