cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A075462 a(n) is the number of solutions to the all-ones lights out problem on an n X n square.

Original entry on oeis.org

1, 1, 1, 16, 4, 1, 1, 1, 256, 1, 64, 1, 1, 16, 1, 256, 4, 1, 65536, 1, 1, 1, 16384, 16, 1, 1, 1, 1, 1024, 1048576, 1, 1048576, 65536, 16, 64, 1, 1, 1, 4294967296, 1, 4, 1, 1, 16, 1, 1, 1073741824, 1, 256, 256, 1, 1, 4, 16, 1, 1, 1, 1, 4194304, 1, 1099511627776, 16777216
Offset: 1

Views

Author

Eric W. Weisstein, Sep 17 2002

Keywords

Comments

In these counts, nonidentical reflected and rotated solutions are considered distinct.

References

  • Caro, Y., Simple proofs to three parity theorems, Ars Combin. 42 (1996), 175-180.
  • Conlon, M. M.; Falidas, M.; Forde, M. J.; Kennedy, J. W.; McIlwaine, S.; and Stern, J., Inversion numbers of graphs, Graph Theory Notes New York 37 (1999), 42-48.
  • Cowen, R.; Hechler, S. H.; Kennedy, J. W.; and Ryba, A., Inversion and neighborhood inversion in graphs, Graph Theory Notes New York 37 (1999), 37-41.
  • Cowen, R. and Kennedy, J., The Lights Out puzzle, Math. Educ. Res. 9 (2000), 28-32.
  • Goldwasser, J. and Klostermeyer, W., Maximization versions of 'Lights Out' games in grids and graphs, Congr. Numer. 126 (1997), 99-111.
  • K. Sutner, Linear cellular automata and the Garden-of-Eden, Math. Intelligencer 11 (1989), 49-53.

Crossrefs

Programs

  • Mathematica
    m[k_] := SparseArray[ {Band[{1, 1}] -> 1, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {k, k}]; b[k_, 0] := SparseArray[ Band[{1, 1}] -> 1, {k, k}]; b[k_, 1] := m[k]; b[k_, n_] := b[k, n] = Mod[m[k].b[k, n-1] + b[k, n-2], 2]; A159257[n_] := First[ Dimensions[ NullSpace[b[n, n], Modulus -> 2]]]; A159257[1] = 0; a[n_] := 2^A159257[n]; Table[a[n], {n, 1, 62}] (* Jean-François Alcover, Oct 10 2012, after Max Alekseyev and Birkas Gyorgy *)

Formula

a(n) = 2^A159257(n). - Max Alekseyev, Sep 17 2009

Extensions

More terms from Max Alekseyev, Sep 17 2009, and Thomas Buchholz, May 16 2014

A159257 Rank deficiency of the Lights Out problem of size n.

Original entry on oeis.org

0, 0, 0, 4, 2, 0, 0, 0, 8, 0, 6, 0, 0, 4, 0, 8, 2, 0, 16, 0, 0, 0, 14, 4, 0, 0, 0, 0, 10, 20, 0, 20, 16, 4, 6, 0, 0, 0, 32, 0, 2, 0, 0, 4, 0, 0, 30, 0, 8, 8, 0, 0, 2, 4, 0, 0, 0, 0, 22, 0, 40, 24, 0, 28, 42, 0, 32, 0, 8, 0, 14, 0, 0, 4, 0, 0, 2, 0, 64, 0, 0, 0, 6, 12, 0, 0, 0, 0, 10, 0, 0, 20, 0, 4, 62, 0, 0, 20, 16, 0, 18, 0, 0, 4, 0, 0, 6, 0, 8, 0, 0, 0, 2, 4, 0, 0, 0, 8, 46, 0, 0, 0, 80, 4, 50, 56, 0, 56, 56, 0
Offset: 1

Views

Author

Bruno Vallet (bruno.vallet(AT)gmail.com), Apr 07 2009

Keywords

Comments

A square array of n X n pixels can have two states (gray, red). Touching a pixel switches its state and the state of the adjacent pixels. The general problem is to turn all pixels ON given any initial configuration. It requires inverting a n^2 by n^2 matrix in Z/2Z. The sequence is the rank deficiency (corank) of the matrix, such that the zero terms correspond to the sizes for which the general case admits a solution.
The size 5 game can be played at the link given below. Rank deficiency is 2 for that game, but only initial configurations that admit a solution are given.
a(n) is nonzero iff n is in A117870; a(n) is zero iff n is in A076436. - Max Alekseyev, Sep 17 2009
a(n) is even and satisfies a(n) <= n. - Thomas Buchholz, May 19 2014
For all indices n and natural numbers k, a(n*k - 1) >= a(n - 1). - William Boyles, Jun 17 2022

Examples

			For n=2, matrix is [1 1 1 0][1 1 0 1][1 0 1 1][0 1 1 1] which is of full rank.
		

References

Crossrefs

Programs

  • Mathematica
    Table[First[Dimensions[NullSpace[AdjacencyMatrix[GridGraph[{n, n}]] + IdentityMatrix[n*n],Modulus -> 2]]], {n, 2, 30}]
    (* Or Faster *)
    A[k_] := DiagonalMatrix[Array[1 &, k - 1], -1] +
      DiagonalMatrix[Array[1 &, k - 1], 1] + IdentityMatrix[k];
    B[k_, 0] := IdentityMatrix[k];
    B[k_, 1] := A[k];
    B[k_, n_] := B[k, n] = Mod[A[k].B[k, n - 1] + B[k, n - 2], 2];
    Table[First[Dimensions[NullSpace[B[n, n], Modulus -> 2]]], {n, 2, 30}]
    (* Birkas Gyorgy, Jun 10 2011 *)
  • PARI
    { A159257(n) = my(p,q,r); p=Mod(1,2); q=p*x;for(u=2,n,r=x*q+p;p=q;q=r); p=subst(q,x,1+x); r=gcd(p,q); poldegree(r) } \\ Zhao Hui Du, Mar 18 2014
    
  • PARI
    { A159257(n) = my(f = polchebyshev(n,2,x/2)*Mod(1,2)); poldegree( gcd(f,subst(f,x,1+x)) ); } \\ Max Alekseyev, Nov 12 2019

Formula

Let f(k,x) = U(k,x/2), where U(k,x) is the k-th Chebyshev polynomial of the second kind over the field GF(2). So f(0,x)=1, f(1,x)=x, f(2,x)=(1+x)^2, and f(n+1,x)=x*f(n,x)+f(n-1,x). Then a(n) equals the degree of gcd(f(n,x), f(n,1+x)). For example, f(5,x)=x^5+x=x(1+x)^4 and f(5, 1+x)=x^4(1+x). So their GCD is x(1+x) and the degree is 2, that is a(5)=2. - Zhao Hui Du, Mar 17 2014; edited by Max Alekseyev, Nov 12 2019

Extensions

More terms from Max Alekseyev, Sep 17 2009
More terms from Thomas Buchholz, May 16 2014

A075463 a(n) is the number of rotation-reflection inequivalent solutions to the all-ones lights out problem on an n X n square.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, 43, 1, 10, 1, 1, 5, 1, 43, 1, 1, 8356, 1, 1, 1, 2080, 5, 1, 1, 1, 1, 136, 131720, 1, 131720, 8356, 5, 10, 1, 1, 1, 536911936, 1, 1, 1, 1, 5, 1, 1, 134225920, 1, 43, 43, 1, 1, 1, 5, 1, 1, 1, 1, 524800, 1, 137439609088, 2099728, 1, 33564704, 549756338176, 1, 536911936, 1, 43, 1, 2080, 1, 1, 5, 1, 1, 1, 1, 2305843011898064896
Offset: 1

Views

Author

Eric W. Weisstein, Sep 17 2002

Keywords

Comments

Reflected and rotated solutions are considered identical.

References

Crossrefs

Programs

  • Mathematica
    a[n_, i_, j_ ] := Table[If[Total[Abs[{i, j} - {r, s}]] <= 1, 1, 0], {r, n}, {s, n}] //Flatten
    a[n_, k_ ] := a[n, Quotient[k + n - 1, n], Mod[k, n, 1]]
    m[n_ ] := a[n, # ] & /@ Range[n^2]
    ker[n_ ] := NullSpace[m[n], Modulus -> 2]
    b[n_ ] := Table[1, {n^2}]
    sol[n_ ] := LinearSolve[m[n], b[n], Modulus -> 2];
    allSolutions[n_ ] := Module[{s, k},
    s = sol[n];
    k = ker[n];
    Mod[(s + # ) & /@ (Total[(#*k)] & /@ Tuples[{0, 1}, Length[k]]), 2]
    ] //Sort
    MatrixRotate[m_ ] := Transpose[Reverse[m]]
    MatrixRotate[m_, n_ ] := Nest[MatrixRotate, m, Mod[n, 4]]
    DihedralOrbit[m_ ] := Union@Join[
    MatrixRotate[m, # ] & /@ Range[0, 3],
    MatrixRotate[Reverse[m], # ] & /@ Range[0, 3]
    ]
    essentialSolutions[n_ ] := Module[{as},
    as = Partition[ #, n] & /@ allSolutions[n];
    Union[as, SameTest -> (MemberQ[DihedralOrbit[ #1], #2] &)]
    ]
    Length[essentialSolutions[ # ]] & /@ Range[16]
    (* Jacob A. Siehler *)
  • PARI
    H(n)={
       my(r);
       r=matrix(n,n,X,Y,Mod(0,2));
       for(u=1,n,r[u,u]=Mod(1,2));
       for(u=1,n-1,r[u,u+1]=Mod(1,2);r[u+1,u]=Mod(1,2));
       r
    }
    E(n)={
       my(r);
       r=matrix(n,n,X,Y,Mod(0,2));
       for(u=1,n,r[u,u]=Mod(1,2));
       r
    }
    b(n)={
       vector(n,X,Mod(1,2))~
    }
    a(n)={
       my(x0,x1,tmp,y,z,mH,vb,v0,v1,yb,zb);
       my(A159257,A075462,A075463,a2,a3,a4,a5,tm,tb);
       x0=E(n);mH=H(n);x1=mH;vb=b(n);
       y=matrix(n,n);yb=vector(n);
       z=matrix(n,n);zb=vector(n);
       v0=vb;v1=mH*vb+v0;
       y[1,]=x0[1,];yb[1]=Mod(0,2);
       y[2,]=x1[1,];yb[2]=v0[1];
       z[1,]=x0[n,];zb[1]=Mod(0,2);
       z[2,]=x1[n,];zb[2]=v0[n];
       for(u=2,n-1,
          tmp=mH*x1+x0;x0=x1;x1=tmp;
          y[u+1,]=x1[1,];z[u+1,]=x1[n,];
          tmp=mH*v1+v0+vb;v0=v1;v1=tmp;
          yb[u+1]=v0[1];zb[u+1]=v0[n]
       );
       x1=mH*x1+x0;
       A159257 = n-matrank(x1);
       A075462=2^A159257;
       tm=matrix(2*n,n,X,Y,Mod(0,2));tb=vector(2*n,X,Mod(0,2))~;
       for(u=1,n,tm[u,]=x1[u,];tb[u]=v1[u]);
       for(u=1,n,
           tm[n+u,u]=Mod(1,2);tm[n+u,n-u+1]+=Mod(1,2);tb[n+u]=Mod(0,2)
       );
       a2=matinverseimage(tm,tb);
       if(length(a2)==0, a2=0, a2=2^(n-matrank(tm)));
       for(u=1,n,tm[n+u,]=y[u,];tb[n+u]=yb[u];tm[n+u,u]+=Mod(1,2));
       a3=matinverseimage(tm,tb);
       if(length(a3)==0, a3=0, a3=2^(n-matrank(tm)));
       for(u=1,n,tm[n+u,]=y[n+1-u,];tb[n+u]=yb[n+1-u];tm[n+u,u]+=Mod(1,2));
       a4=matinverseimage(tm,tb);
       if(length(a4)==0, a4=0, a4=2^(n-matrank(tm)));
       for(u=1,n,tm[n+u,]=y[u,]+z[n+1-u,];tb[n+u]=yb[u]+zb[n+1-u]);
       a5=matinverseimage(tm,tb);
       if(length(a5)==0, a5=0, a5=2^(n-matrank(tm)));
       A075463=(A075462+2*(a2+a3+a4)+a5)/8
    } \\ Zhao Hui Du, Mar 29 2014

Extensions

a(19)-a(29) from Jacob A. Siehler, Apr 29 2008
Terms a(30) and beyond from Zhao Hui Du, Mar 24 2014

A137619 a(n) is the maximal (nonredundant) number of switch flippings in a solution of the all-ones lights out problem on an n X n square.

Original entry on oeis.org

1, 4, 5, 12, 15, 28, 33, 40, 55, 44, 71, 72, 105, 96, 117, 152, 147, 188, 225, 224, 245, 276, 299, 306, 353, 356, 405, 416, 451
Offset: 1

Views

Author

Jacob A. Siehler, Apr 27 2008

Keywords

References

Crossrefs

Cf. A075464.

A353071 Maximum number of clicks needed to solve any solvable Lights Out problem on an n X n grid.

Original entry on oeis.org

1, 4, 9, 7, 15, 36, 49, 64, 37, 100, 65, 144, 169, 123, 225, 124, 199, 324, 197, 400, 441, 484
Offset: 1

Views

Author

William Boyles, Apr 21 2022

Keywords

Comments

a(n) = n^2 if and only if A159257(n) = 0.
a(n) >= A075464(n).
If n = 6k-1 for some integer k, then a(n) <= 26k^2 - 12k + 1. This upper bound is equal to a(n) when A159257(n) = 2. Further, it is conjectured that if A159257(n) = 2, then n = 6k-1 for some integer k.
It is conjectured that if A159257(n) = 4, then n = 5k-1 for some integer k, and a(n) = 17k^2 - 10k.
It is conjectured that if A159257(n) = 6, then n = 12k-1 for some integer k, and a(n) = 88k^2 - 24k + 1
It is conjectured that if A159257(n) = 8, then either n = 10k-1 or n = 17k-1 for some integer k. If n = 10k-1, then a(n) = 60k^2 - 20k - 3. If n = 17k-1, then a(n) = 161k^2 - 34k - 3.
It is conjectured that if A159257(n) = 10, then n = 30k-1 for some integer k, and a(n) = 506k^2 - 60k - 3.
239 <= a(23) <= 305.

Crossrefs

Showing 1-5 of 5 results.