A075468 Minimal m such that n^n-m and n^n+m are both primes, or -1 if there is no such m.
1, 4, 15, 42, 7, 186, 75, 10, 33, 1302, 487, 114, 297, 58, 2253, 1980, 1045, 1638, 1767, 2032, 8067, 10800, 257, 588, 3423, 3334, 5907, 12882, 1213, 12972, 8547, 3644, 7035, 2178, 16747, 24324, 5523, 12628, 2241, 25602, 16495, 41706, 23127, 22376, 24927
Offset: 2
Keywords
Examples
a(4)=15 because 4^4=256 and 256 -/+ 15 = 271 and 241 are primes with smallest distance from 4^4; a(23)= 10800 because 23^23 = 20880467999847912034355032910567 and 23^23 -/+ 10800 are two primes with the smallest distance from 23^23.
Links
- Sean A. Irvine, Table of n, a(n) for n = 2..150
Programs
-
Mathematica
fm[n_]:=Module[{n2=n^n,m=1},While[!PrimeQ[n2+m]||!PrimeQ[n2-m],m++];m]; Array[fm,50,2] (* Harvey P. Dale, May 19 2012 *)
-
PARI
a(n) = my(m=1,nn=n^n); while (! (ispseudoprime(nn-m) && ispseudoprime(nn+m)), m++); m; \\ Michel Marcus, Feb 21 2025
Formula
Extensions
More terms from Lior Manor, Sep 18 2002
Corrected by Harvey P. Dale, May 19 2012
Comments