A075586 Primes p such that the number of distinct prime divisors of all composite numbers between p and the next prime is 6.
31, 47, 67, 103, 109, 163, 193, 277, 313, 349, 379, 397, 457, 463, 487, 877, 1087, 1093, 1279, 1303, 1567, 1873, 2269, 2347, 2473, 2797, 3697, 4447, 4789, 4999, 5077, 5413, 5503, 5923, 6007, 6217, 6469, 6997, 7603, 7639, 7723, 7933, 8779, 9277, 10159
Offset: 1
Keywords
Examples
Between 31 and the next prime 37, there are 5 composite numbers whose prime divisors are respectively for 32: {2}, 33: {3,11}, 34: {2,17}, 35: {5,7} and 36: {2,3}; hence, these distinct prime divisors are {2,3,5,7,11,17}, the number of these distinct prime divisors is 6, so 31 is a term. - _Bernard Schott_, Sep 26 2019
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- XIAO Gang, Factoris, a program that factorizes huge integers
Crossrefs
Programs
-
Magma
a:=[]; for k in PrimesInInterval(2,10000) do b:={}; for s in [k..NextPrime(k)-1] do if not IsPrime(s) then b:=b join Set(PrimeDivisors(s)); end if; end for; if #Set(b) eq 6 then Append(~a,k); end if; end for; a; // Marius A. Burtea, Sep 26 2019
-
Mathematica
Select[Partition[Prime[Range[1250]],2,1],Length[Union[Flatten[ FactorInteger/@ Range[ #[[1]]+1,#[[2]]-1],1][[All,1]]]]==6&][[All,1]] (* Harvey P. Dale, May 25 2020 *)
Extensions
More terms from Sam Alexander, Oct 20 2003
Comments