A075592 Numbers n such that number of distinct prime divisors of n is a divisor of n.
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 86, 88, 89, 90
Offset: 1
Links
- Christian N. K. Anderson, Table of n, a(n) for n = 1..10000
- Curtis N. Cooper, Robert E. Kennedy, Chebyshev's inequality and natural density, Amer. Math. Monthly 96 (1989), no. 2, 118-124.
Crossrefs
Programs
-
Mathematica
Select[Range[2,100],Divisible[#,Length[Select[Divisors[#], PrimeQ]]]&] (* Harvey P. Dale, Mar 17 2011 *)
-
PARI
isok(n) = iferr(!(n % omega(n)), E, 0); \\ Michel Marcus, Oct 06 2017
-
R
library(gmp); omega<-function(x) length(unique(as.numeric(factorize(x)))) which(c(F,vapply(2:100,function(n) isint(n/omega(n)),T))) # Christian N. K. Anderson, Apr 25 2013
Extensions
More terms from David Wasserman, Jan 20 2005
"Distinct" added to name by Christian N. K. Anderson, Apr 23 2013
Comments