cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A336064 Numbers divisible by the maximal exponent in their prime factorization (A051903).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

The asymptotic density of this sequence is A336065 = 0.848957... (Schinzel and Šalát, 1994).

Examples

			4 = 2^2 is a term since A051903(4) = 2 is a divisor of 4.
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, chapter 3, p. 331.

Crossrefs

A005117 (except for 1) is subsequence.

Programs

  • Mathematica
    H[1] = 0; H[n_] := Max[FactorInteger[n][[;; , 2]]]; Select[Range[2, 100], Divisible[#, H[#]] &]
  • PARI
    isok(m) = if (m>1, (m % vecmax(factor(m)[,2])) == 0); \\ Michel Marcus, Jul 08 2020

A185307 Numbers not divisible by the number of their distinct prime factors.

Original entry on oeis.org

1, 15, 21, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 70, 75, 77, 85, 87, 91, 93, 95, 99, 110, 111, 115, 117, 119, 123, 129, 130, 133, 135, 140, 141, 143, 145, 147, 153, 154, 155, 159, 161, 170, 171, 175, 177, 182, 183, 185, 187, 189, 190, 201, 203, 205, 207, 209
Offset: 1

Views

Author

Keywords

Comments

The complement of A075592 (omega(n) divides n).
Though initially sparse, the sequence increases in density. There are more numbers divisible by omega(n) than not from [3,9265], but there are always more indivisible numbers thereafter.
There are 308 more numbers divisible than indivisible in the range from 1 to 2754, 2778, and 2880. This three values are the global maxima.
The asymptotic density of this sequence is 1 (Cooper and Kennedy, 1989). - Amiram Eldar, Jul 10 2020

Examples

			The distinct prime factors of 45 are 3 and 5, but 45 is not divisible by 2.
		

Crossrefs

Cf. A075592 (complement), A001221, A001222, A074946, A134334.

Programs

  • Mathematica
    Join[{1},Select[Range[2,300],Mod[#,PrimeNu[#]]!=0&]] (* Harvey P. Dale, Jun 05 2023 *)
  • PARI
    isok(n) = iferr(n % omega(n), E, 1); \\ Michel Marcus, Jul 10 2020
  • R
    library(numbers); isint<-function(x) x==as.integer(x); which(!vapply(1:500,function(n) isint(n/omega(n)),T))
    

A187778 Numbers k dividing psi(k), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288, 13122, 13824, 15552, 17496, 18432, 20736, 23328
Offset: 1

Views

Author

Enrique Pérez Herrero, Jan 05 2013

Keywords

Comments

This sequence is closed under multiplication.
Also 1 and the numbers where psi(n)/n = 2, or n/phi(n)=3, or psi(n)/phi(n)=6.
Also 1 and the numbers of the form 2^i*3^j with i, j >= 1 (A033845).
If M(n) is the n X n matrix whose elements m(i,j) = 2^i*3^j, with i, j >= 1, then det(M(n))=0.
Numbers n such that Product_{i=1..q} (1 + 1/d(i)) is an integer where q is the number of the distinct prime divisors d(i) of n. - Michel Lagneau, Jun 17 2016

Examples

			psi(48) = 96 and 96/48 = 2 so 48 is in this sequence.
		

References

  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.

Crossrefs

Programs

  • Magma
    [6*n: n in [1..3000] | PrimeDivisors(n) subset [2, 3]]; // Vincenzo Librandi, Jan 11 2019
  • Mathematica
    Select[Range[10^4],#/EulerPhi[#]==3 || #==1&]
    Join[{1}, 6 Select[Range@4000, Last@Map[First, FactorInteger@#]<=3 &]] (* Vincenzo Librandi, Jan 11 2019 *)
  • PARI
    dedekindpsi(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n]);
    k=0; n=0; while(k<10000,n++; if( dedekindpsi(n) % n== 0, k++; print1(n, ", ")));
    

Formula

For n > 1, a(n) = 6 * A003586(n).
Sum_{n>0} 1/a(n)^k = 1 + Sum_{i>0} Sum_{j>0} 1/(2^i * 3^j)^k = 1 + 1/((2^k-1)*(3^k-1)).

A336066 Numbers k such that the exponent of the highest power of 2 dividing k (A007814) is a divisor of k.

Original entry on oeis.org

2, 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 42, 44, 46, 48, 50, 52, 54, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 90, 92, 94, 98, 100, 102, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 138, 140, 142, 144
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

All the terms are even by definition.
If m is a term then m*(2*k+1) is a term for all k>=1.
Šalát (1994) proved that the asymptotic density of this sequence is 0.435611... (A336067).

Examples

			2 is a term since A007814(2) = 1 is a divisor of 2.
		

Crossrefs

A001146 and A039956 are subsequences.

Programs

  • Mathematica
    Select[Range[2, 150, 2], Divisible[#, IntegerExponent[#, 2]] &]
  • PARI
    isok(m) = if (!(m%2), (m % valuation(m,2)) == 0); \\ Michel Marcus, Jul 08 2020
    
  • Python
    from itertools import count, islice
    def A336066_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:n%(~n&n-1).bit_length()==0,count(max(startvalue+startvalue&1,2),2))
    A336066_list = list(islice(A336066_gen(startvalue=3),30)) # Chai Wah Wu, Jul 10 2022

A336068 Numbers k such that the exponent of the highest power of 3 dividing k (A007949) is a divisor of k.

Original entry on oeis.org

3, 6, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 48, 51, 54, 57, 60, 66, 69, 72, 75, 78, 84, 87, 90, 93, 96, 102, 105, 108, 111, 114, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 156, 159, 165, 168, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

All the terms are divisible by 3 by definition.
Šalát (1994) proved that the asymptotic density of this sequence is 0.287106... (A336069).

Examples

			3 is a term since A007949(3) = 1 is a divisor of 3.
		

Crossrefs

A055777 is a subsequence.

Programs

  • Mathematica
    Select[Range[200], Mod[#, 3] == 0 && Divisible[#, IntegerExponent[#, 3]] &]
  • PARI
    isok(m) = if (!(m%3), (m % valuation(m,3)) == 0); \\ Michel Marcus, Jul 08 2020

A175785 Numbers n such that the number of distinct prime divisors of n does not divide phi(n).

Original entry on oeis.org

30, 60, 66, 102, 110, 120, 132, 138, 150, 165, 170, 174, 204, 220, 230, 240, 246, 255, 264, 276, 282, 290, 300, 318, 340, 345, 348, 354, 374, 408, 410, 426, 435, 440, 460, 470, 480, 492, 498, 506, 528, 530, 534, 550, 552, 561, 564, 580, 590, 600, 606, 615
Offset: 1

Views

Author

Enrique Pérez Herrero, Sep 04 2010

Keywords

Comments

a(n) gives the integers where omega(n) = A001221(n) does not divide phi(n) = A000010(n).
This sequence does not contain any prime powers (A000961), nor any numbers with only two distinct prime divisors (A007774); so it is a subsequence of A000977.

Examples

			30 is in this sequence because omega(30)=3 does not divide phi(30)=8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,700],Mod[EulerPhi[#],PrimeNu[#]]!=0&] (* Harvey P. Dale, Dec 29 2019 *)
  • PARI
    isok(n) = (eulerphi(n) % omega(n) != 0) \\ Michel Marcus, Jun 12 2013

A231876 Numbers n such that omega(n)^2 (cf. A001221) divides n.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 47, 48, 49, 52, 53, 56, 59, 61, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 88, 89, 90, 92, 96, 97, 100, 101, 103, 104, 107, 108, 109, 112, 113, 116, 121, 124, 125, 126, 127, 128, 131, 136, 137, 139, 144, 148, 149
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Includes all prime powers (A246655), as well as 4*A246655. - Robert Israel, Apr 25 2017

Crossrefs

Programs

  • Maple
    select(n -> n mod nops(numtheory:-factorset(n))^2 = 0, [$2..1000]); # Robert Israel, Apr 25 2017
  • Mathematica
    Select[Range[2, 500], Mod[#, PrimeNu[#]^2] == 0  &] (* G. C. Greubel, Apr 24 2017 *)
  • PARI
    isok(n) = !(n % omega(n)^2); \\ Michel Marcus, Apr 25 2017

A231877 Numbers n such that omega(n)^2 (cf. A001221) does not divide n.

Original entry on oeis.org

1, 6, 10, 14, 15, 18, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 45, 46, 50, 51, 54, 55, 57, 58, 60, 62, 63, 65, 66, 69, 70, 74, 75, 77, 78, 82, 84, 85, 86, 87, 91, 93, 94, 95, 98, 99, 102, 105, 106, 110, 111, 114, 115, 117, 118, 119, 120, 122, 123, 129, 130, 132, 133, 134, 135, 138, 140, 141, 142, 143, 145, 146, 147, 150
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 500], Mod[#, PrimeNu[#]^2] != 0  &]] (* G. C. Greubel, Apr 24 2017 *)

A231878 Numbers k such that bigomega(k)^2 (cf. A001222) divides k.

Original entry on oeis.org

2, 3, 4, 5, 7, 11, 13, 16, 17, 18, 19, 23, 27, 29, 31, 37, 41, 43, 45, 47, 53, 59, 61, 63, 67, 71, 73, 79, 83, 89, 97, 99, 101, 103, 107, 109, 113, 117, 127, 131, 137, 139, 144, 149, 151, 153, 157, 163, 167, 171, 173, 179, 181, 191, 193, 197, 199, 200, 207, 211, 216, 223, 227, 229, 233, 239, 241, 251, 256, 257, 261, 263
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Contains all primes. - Ivan Neretin, Apr 05 2016

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 265], Divisible[#, PrimeOmega[#]^2] &] (* Ivan Neretin, Apr 05 2016 *)
  • PARI
    isok(n) = !(n % bigomega(n)^2); \\ Michel Marcus, Apr 05 2016

A231879 Numbers n such that bigomega(n)^2 (cf. A001222) does not divide n.

Original entry on oeis.org

1, 6, 8, 9, 10, 12, 14, 15, 20, 21, 22, 24, 25, 26, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115
Offset: 1

Views

Author

N. J. A. Sloane, Nov 17 2013

Keywords

Comments

Contains all semiprimes (A001358) except 4. - Ivan Neretin, Apr 05 2016

Crossrefs

Programs

  • Mathematica
    Join[{1}, Select[Range[2, 115], ! Divisible[#, PrimeOmega[#]^2] &]] (* Ivan Neretin, Apr 05 2016 *)
  • PARI
    lista(nn) = {print1(1, ", "); for(n=2, nn, if(n % bigomega(n)^2 != 0, print1(n, ", ")));} \\ Altug Alkan, Apr 05 2016
Showing 1-10 of 12 results. Next