cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332881 If n = Product (p_j^k_j) then a(n) = denominator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 2, 3, 2, 5, 1, 7, 2, 3, 5, 11, 1, 13, 7, 5, 2, 17, 1, 19, 5, 21, 11, 23, 1, 5, 13, 3, 7, 29, 5, 31, 2, 11, 17, 35, 1, 37, 19, 39, 5, 41, 7, 43, 11, 5, 23, 47, 1, 7, 5, 17, 13, 53, 1, 55, 7, 57, 29, 59, 5, 61, 31, 21, 2, 65, 11, 67, 17, 23, 35
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Denominator of sum of reciprocals of squarefree divisors of n.

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Cf. A001615, A008683, A017666, A048250, A007947, A109395, A187778 (positions of 1's), A306695, A308443, A308462, A332880 (numerators), A332883.

Programs

  • Maple
    a:= n-> denom(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Denominator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Denominator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332881(n) = denominator(A001615(n)/n);

Formula

Denominators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = denominator of Sum_{d|n} mu(d)^2/d.
a(n) = denominator of psi(n)/n.
a(p) = p, where p is prime.
a(n) = n / A306695(n) = n / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021

A323327 Numbers that start an unbounded aliquot-like sequence based on Dedekind psi function (A001615).

Original entry on oeis.org

318, 330, 498, 510, 534, 546, 636, 660, 786, 798, 942, 954, 978, 990, 996, 1020, 1068, 1092, 1110, 1122, 1254, 1272, 1320, 1398, 1410, 1470, 1494, 1506, 1518, 1530, 1572, 1596, 1602, 1614, 1626, 1638, 1734, 1884, 1908, 1938, 1950, 1956, 1980, 1992, 2040, 2046
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

Let t(k) = psi(k) - k = A001615(k) - k be the sum of aliquot divisors d of k, such that k/d is squarefree. Penney & Pomerance proposed a problem to show that the aliquot-like sequence related to this function, i.e., the trajectory of an integer k under the repeated application of the map k -> t(k), can be unbounded. Since t(m^j * k) = m^j * t(k) if m|k, then if in the sequence a_0 = k, a_1 = t(k), a_2 = t(t(k)), ... there is a term a_{i1} = m^j * a_0 such that m|k and j > 0 then a_{i+i1} = m^j * a_i for all i and thus the sequence is unbounded.

Examples

			318 is in the sequence since t(318) = psi(318) - 318 = 330, t(330) = 534, etc., and this repeated mapping yields an unbounded sequence.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 71, entry 318.

Crossrefs

Programs

  • Mathematica
    t[1]=0; t[n_] := (Times@@(1+1/Transpose[FactorInteger[n]][[1]])-1)*n; rt[n_] := Module[{f=FactorInteger[n]}, e=GCD@@f[[;;,2]]; Surd[n,e]]; divrootQ[n_, m_] := Divisible[n, rt[m]]; divQ[s_, n_] := If[n==0, 0, If[MemberQ[s, n], 1, If[ Length[Select[s, Divisible[n,#] && divrootQ[#, n/#] &]] > 0, 2, 3]]]; seqQ[n_] := Module[{n1=n}, s={}; While[divQ[s, n1] ==3, AppendTo[s, n1]; n1=t[n1]]; divQ[s, n1]] == 2; Select[Range[10000], seqQ]

A253628 Psi(n) mod n, where Psi is the Dedekind psi function (A001615).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 4, 3, 8, 1, 0, 1, 10, 9, 8, 1, 0, 1, 16, 11, 14, 1, 0, 5, 16, 9, 20, 1, 12, 1, 16, 15, 20, 13, 0, 1, 22, 17, 32, 1, 12, 1, 28, 27, 26, 1, 0, 7, 40, 21, 32, 1, 0, 17, 40, 23, 32, 1, 24, 1, 34, 33, 32, 19, 12, 1, 40, 27, 4, 1, 0, 1, 40, 45
Offset: 1

Views

Author

Tom Edgar, Jan 06 2015

Keywords

Comments

a(n) = A054024(n) when n is squarefree.
Indices of 1 appear to be given by primes A000040 (see conjecture in A068494). The (weaker) statement that a(prime(i)) = 1 is a direct consequence of the multiplicity of A001615.
a(n) = 0 if n is a member of A187778.

Examples

			A001615(12) = 24 and 24 == 0 (mod 12) so a(12) = 0.
A001615(15) = 24 and 24 == 9 (mod 15) so a(15) = 9.
		

Crossrefs

Programs

  • Maple
    A253628 := proc(n)
        modp(A001615(n),n) ;
    end proc: # R. J. Mathar, Jan 09 2015
  • Mathematica
    a253628[n_] :=
    Mod[DirichletConvolve[j, MoebiusMu[j]^2, j, #], #] & /@ Range@n; a253628[75] (* Michael De Vlieger, Jan 07 2015, after Jan Mangaldan at A001615 *)
  • Sage
    [(n*mul(1+1/p for p in prime_divisors(n)))%n for n in [1..100]]

Formula

a(n) = A001615(n) mod n.
Showing 1-3 of 3 results.