A075700 Decimal expansion of -zeta'(0).
9, 1, 8, 9, 3, 8, 5, 3, 3, 2, 0, 4, 6, 7, 2, 7, 4, 1, 7, 8, 0, 3, 2, 9, 7, 3, 6, 4, 0, 5, 6, 1, 7, 6, 3, 9, 8, 6, 1, 3, 9, 7, 4, 7, 3, 6, 3, 7, 7, 8, 3, 4, 1, 2, 8, 1, 7, 1, 5, 1, 5, 4, 0, 4, 8, 2, 7, 6, 5, 6, 9, 5, 9, 2, 7, 2, 6, 0, 3, 9, 7, 6, 9, 4, 7, 4, 3, 2, 9, 8, 6, 3, 5, 9, 5, 4, 1, 9, 7, 6, 2, 2, 0, 0
Offset: 0
Examples
0.91893853320467274178032...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- J. Sondow and E. W. Weisstein, MathWorld: Wallis Formula.
- Eric Weisstein's World of Mathematics, Log Gamma Function.
- Eric Weisstein's World of Mathematics, Stirling's Approximation.
- Wikipedia, Gamma function.
- Wikipedia, Normal curve
- Index entries for zeta function.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Log(2*Pi(R))/2; // G. C. Greubel, Oct 07 2018
-
Maple
evalf(log(2*Pi)/2,120); # Muniru A Asiru, Oct 08 2018
-
Mathematica
Log[Sqrt[2*Pi]] // RealDigits[#, 10, 104] & // First (* Jean-François Alcover, Apr 29 2013 *)
-
PARI
-zeta'(0) \\ Charles R Greathouse IV, Mar 28 2012
Formula
Equals Integral_{x=0..1} log(Gamma(x)) dx. - Jean-François Alcover, Apr 29 2013
More generally, equals t-t*log(t)+Integral_{x=t..(t+1)} log(Gamma(x)) dx for any t>=0 (the Raabe formula). - Stanislav Sykora, May 14 2015
Equals lim_{k->oo} log(k!) + k - (k + 1/2)*log(k) (by Stirling's formula). - Amiram Eldar, Aug 21 2020
Extensions
Normalized representation (leading zero and offset) R. J. Mathar, Jan 25 2009
Comments