A075712 Rearrangement of primes into Germain groups (or Cunningham chains).
2, 5, 11, 23, 47, 3, 7, 13, 17, 19, 29, 59, 31, 37, 41, 83, 167, 43, 53, 107, 61, 67, 71, 73, 79, 89, 179, 359, 719, 1439, 2879, 97, 101, 103, 109, 113, 227, 127, 131, 263, 137, 139, 149, 151, 157, 163, 173, 347, 181, 191, 383, 193, 197, 199, 211, 223, 229, 233
Offset: 1
Examples
The groups are: {2, 5, 11, 23, 47}, {3, 7}, {13}, {17}, {19}, {29, 59}, {31}, {37}, {41, 83, 167}, {43}, {53, 107}, {61}, {67}, {71}, {73}, {79}, {89, 179, 359, 719, 1439, 2879}, {97}, {101}, {103}, {109}, {113, 227}, {127}, {131, 263}, {137}, {139}, ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Block[{a = {2}, j = 1, k, p}, Do[k = j; If[PrimeQ@ a[[-1]], AppendTo[a, 2 a[[-1]] + 1], While[! FreeQ[a, Set[p, Prime[k]]], k++]; j++; Set[a, Append[a[[1 ;; -2]], p]]], 10^3]; a] (* Michael De Vlieger, Nov 17 2020 *)
-
PARI
first(n) = my(res=List([2,5,11,23,47])); forprime(p=3, oo, if(!isprime((p-1)>>1), listput(res,p); c = 2*p+1; while(isprime(c), listput(res,c); c=2*c+1)); if(#res>n,return(res))); res \\ David A. Corneth, Nov 13 2021
Extensions
Edited by N. J. A. Sloane, Nov 13 2021
More terms from David A. Corneth, Nov 13 2021
Comments