A075844 Numbers k such that 11*k^2 + 4 is a square.
0, 6, 120, 2394, 47760, 952806, 19008360, 379214394, 7565279520, 150926376006, 3010962240600, 60068318435994, 1198355406479280, 23907039811149606, 476942440816512840, 9514941776519107194, 189821893089565631040
Offset: 0
References
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..750
- Tanya Khovanova, Recursive Sequences
- J. J. O'Connor and E. F. Robertson, Pell's Equation
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (20,-1).
Crossrefs
Cf. A221762.
Programs
-
GAP
a:=[0,6];; for n in [3..20] do a[n]:=20*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 06 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 20); [0] cat Coefficients(R!( 6*x/(1 - 20*x + x^2) )); // G. C. Greubel, Dec 06 2019 -
Maple
seq(coeff(series(6*x/(1-20*x+x^2), x, n+1), x, n), n = 0..20); # G. C. Greubel, Dec 06 2019
-
Mathematica
LinearRecurrence[{20,-1},{0,6},20] (* Harvey P. Dale, May 28 2012 *)
-
PARI
my(x='x+O('x^20)); concat([0], Vec(6*x/(1-20*x+x^2))) \\ G. C. Greubel, Dec 06 2019
-
Sage
def A075844_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 6*x/(1-20*x+x^2) ).list() A075844_list(20) # G. C. Greubel, Dec 06 2019
Formula
a(n) = ((10+3*sqrt(11))^n - (10-3*sqrt(11))^n) / sqrt(11).
a(n) = 20*a(n-1) - a(n-2).
G.f.: 6*x/(1 - 20*x + x^2).
a(n) = 6*A075843(n). - R. J. Mathar, Jul 03 2011
Comments