A075846 Numbers k such that sopf(k) = (1/2)*(sopf(k+1) + sopf(k-1)), where sopf(x) = sum of the distinct prime factors of x.
10, 21, 35, 82, 221, 296, 961, 2665, 12629, 13117, 30317, 54485, 99145, 125750, 132728, 142198, 156379, 185461, 225898, 241057, 265227, 265643, 280918, 281396, 284531, 326698, 379331, 393335, 400685, 437241, 437999, 548101, 584502, 641561
Offset: 1
Keywords
Examples
The sum of the distinct prime factors of 21 is 3 + 7 = 10; the sum of the distinct prime factors of 22 is 2 + 11 = 13; the sum of the distinct prime factors of 20 is 2 + 5 = 7; and 10 = (1/2)*(13 + 7). Hence 21 belongs to the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..100 from Harvey P. Dale)
Programs
-
Magma
[k:k in [3..642000]| (1/2)*(&+PrimeDivisors(k+1) + &+PrimeDivisors(k-1)) eq (&+PrimeDivisors(k))]; // Marius A. Burtea, Feb 12 2020
-
Mathematica
p[n_] := Apply[Plus, Transpose[FactorInteger[n]][[1]]]; Select[Range[3, 10^5], p[ # ] == 0.5 (p[ # + 1] + p[ # - 1]) &] sopf[n_]:=Total[Transpose[FactorInteger[n]][[1]]]; Rest[Flatten[ Position[ Partition[sopf/@Range[650000],3,1],?(Mean[{First[ #], Last[#]}] == #[[2]]&),{1},Heads->False]]]+1 (* _Harvey P. Dale, Sep 05 2013 *)
Extensions
Edited and extended by Ray Chandler, Feb 13 2005