cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075892 Average of squares of successive primes: a(n) = (prime(n+1)^2 + prime(n)^2)/2, with n >= 2.

Original entry on oeis.org

17, 37, 85, 145, 229, 325, 445, 685, 901, 1165, 1525, 1765, 2029, 2509, 3145, 3601, 4105, 4765, 5185, 5785, 6565, 7405, 8665, 9805, 10405, 11029, 11665, 12325, 14449, 16645, 17965, 19045, 20761, 22501, 23725, 25609, 27229, 28909, 30985, 32401
Offset: 2

Views

Author

Zak Seidov, Oct 17 2002

Keywords

Comments

a(n) is prime for n in A240749. - Robert Israel, Jul 06 2017
If p and q are primes such that p > q > 3, then ((p^2 - q^2)/2, p*q, (p^2 + q^2)/2) is a primitive Pythagorean triple. - César Aguilera, Jun 02 2022

Examples

			a(2)=17 because (prime(3)^2 + prime(2)^2)/2 = (5^2 + 3^2)/2 = 17.
		

Crossrefs

Programs

  • Magma
    [(NthPrime(n+1)^2+NthPrime(n)^2)/2: n in [2..50]]; // Vincenzo Librandi, Mar 07 2015
  • Maple
    seq((ithprime(i)^2 + ithprime(i+1)^2)/2, i=2..100); # Robert Israel, Jul 06 2017
  • Mathematica
    Table[(Prime[n + 1]^2 + Prime[n]^2)/2, {n, 2, 50}] (* Vincenzo Librandi, Mar 07 2015 *)
    p=2;q=3;Table[p=q;q=NextPrime[q];(q^2+p^2)/2,{100}] (* Zak Seidov, Jul 06 2017 *)
  • PARI
    a(n) = (prime(n+1)^2+prime(n)^2)/2; \\ Michel Marcus, Oct 03 2013
    

Formula

a(n)^2 = A124434(n)^2 + A006094(n)^2. - César Aguilera, Jun 02 2022