A075892 Average of squares of successive primes: a(n) = (prime(n+1)^2 + prime(n)^2)/2, with n >= 2.
17, 37, 85, 145, 229, 325, 445, 685, 901, 1165, 1525, 1765, 2029, 2509, 3145, 3601, 4105, 4765, 5185, 5785, 6565, 7405, 8665, 9805, 10405, 11029, 11665, 12325, 14449, 16645, 17965, 19045, 20761, 22501, 23725, 25609, 27229, 28909, 30985, 32401
Offset: 2
Examples
a(2)=17 because (prime(3)^2 + prime(2)^2)/2 = (5^2 + 3^2)/2 = 17.
Links
- Zak Seidov, Table of n, a(n) for n = 2..10001
Programs
-
Magma
[(NthPrime(n+1)^2+NthPrime(n)^2)/2: n in [2..50]]; // Vincenzo Librandi, Mar 07 2015
-
Maple
seq((ithprime(i)^2 + ithprime(i+1)^2)/2, i=2..100); # Robert Israel, Jul 06 2017
-
Mathematica
Table[(Prime[n + 1]^2 + Prime[n]^2)/2, {n, 2, 50}] (* Vincenzo Librandi, Mar 07 2015 *) p=2;q=3;Table[p=q;q=NextPrime[q];(q^2+p^2)/2,{100}] (* Zak Seidov, Jul 06 2017 *)
-
PARI
a(n) = (prime(n+1)^2+prime(n)^2)/2; \\ Michel Marcus, Oct 03 2013
Comments