cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075997 a(n) = [n/2] - [n/3] + [n/4] - [n/5] + [n/6] - ..., where [n/k] = floor(n/k).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 1, 4, 2, 3, 2, 5, 4, 5, 2, 6, 5, 6, 5, 8, 5, 6, 5, 10, 8, 9, 6, 9, 8, 9, 8, 13, 10, 11, 8, 12, 11, 12, 9, 14, 13, 14, 13, 16, 11, 12, 11, 18, 16, 17, 14, 17, 16, 17, 14, 19, 16, 17, 16, 21, 20, 21, 16, 22, 19, 20, 19, 22, 19, 20, 19, 26, 25, 26, 21, 24, 21, 22, 21
Offset: 0

Views

Author

Clark Kimberling, Sep 28 2002

Keywords

Comments

a(n) is the number of terms among {floor(n/k)}, 1<=k<=n, which are even. - Leroy Quet, Jan 19 2006

Examples

			a(6) = [6/2]-[6/3]+[6/4]-[6/5]+[6/6]-[6/7]+... = 3-2+1-1+1-0+... = 2.
		

Crossrefs

Programs

  • Maple
    A075997:=n->add(floor(n/(2*i))-floor((n-i)/(2*i)), i=1..n): seq(A075997(n), n=0..100); # Wesley Ivan Hurt, Jan 30 2016
  • Mathematica
    Table[Sum[Floor[n/(2 i)] - Floor[(n - i)/(2 i)], {i, n}], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 30 2016 *)
  • PARI
    a(n) = sum(k=2, n, (-1)^k*(n\k)); \\ Michel Marcus, Dec 20 2020
    
  • Python
    from math import isqrt
    def A075997(n): return n+(s:=isqrt(n))**2-((t:=isqrt(m:=n>>1))**2<<1)-(sum(n//k for k in range(1,s+1))-(sum(m//k for k in range(1,t+1))<<1)<<1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = n - A059851(n).
a(n) = n - A006218(n) + 2*A006218(floor(n/2)). - Vladeta Jovovic, Oct 02 2002
a(n) = n - Sum_{n/2A000005(k). - Leroy Quet, Jan 19 2006
G.f.: ( Sum_{i>0} x^(2*i)/(1+x^i) )/(1-x). - Vladeta Jovovic, Apr 24 2006
a(n) = Sum_{i=1..n} floor(n/(2*i)) - floor((n-i)/(2*i)). - Wesley Ivan Hurt, Jan 30 2016
Conjecture: Let f(a,b)=1, if (a+b) mod |a-b| != (a mod |a-b|)+(b mod |a-b|), and 0 otherwise. a(n) = Sum_{k=1..n-1} f(n+k,n-k). - Benedict W. J. Irwin, Sep 23 2016
a(n) = Sum_{k=1..n} (floor((n-i)/i) mod 2 ). - Wesley Ivan Hurt, Dec 20 2020
a(n) ~ (1 - log(2))*n. - Vaclav Kotesovec, Jun 14 2025