A076014 Triangle in which m-th entry of n-th row is m^(n-1).
1, 1, 2, 1, 4, 9, 1, 8, 27, 64, 1, 16, 81, 256, 625, 1, 32, 243, 1024, 3125, 7776, 1, 64, 729, 4096, 15625, 46656, 117649, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 1, 256, 6561, 65536, 390625, 1679616, 5764801, 16777216, 43046721
Offset: 1
Examples
For example, T(3,2)=4 since there are exactly 4 functions f from {1,2} to {1,2,3,4} that satisfy f(x)=x or f(x)=2x. If we specify each function by the ordered pair (f(1),f(2)), the four functions are (1,2), (1,4), (2,2), and (2,4). - _Dennis P. Walsh_, Feb 27 2013 Triangle begins: 1; 1, 2; 1, 4, 9; 1, 8, 27, 64; 1, 16, 81, 256, 625; 1, 32, 243, 1024, 3125, 7776; 1, 64, 729, 4096, 15625, 46656, 117649; 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152; ...
Links
- Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Theorem 2.5, p. 132.
Programs
-
Maple
seq(seq(m^(n-1),m=1..n),n=1..20); # Dennis P. Walsh, Feb 27 2013
-
Mathematica
Table[m^(n-1),{n,10},{m,n}]//Flatten (* Harvey P. Dale, May 27 2017 *)
Formula
T(n, m) = m^(n-1), n >= m >= 1, otherwise 0.
G.f. for m-th column: (m^(m-1))(x^m)/(1-m*x), m >= 1.
a(n,m) = Sum_{p=1..m} Stirling2(n,p)*A008279(m-1, p-1), n >= m >= 1, otherwise 0.
Comments