A244128 Triangle read by rows: coefficients T(n,k) of a binomial decomposition of 0^(n-1) as Sum(k=0..n)T(n,k)*binomial(n,k).
0, 1, 0, 1, -2, 0, 1, -4, 9, 0, 1, -8, 27, -64, 0, 1, -16, 81, -256, 625, 0, 1, -32, 243, -1024, 3125, -7776, 0, 1, -64, 729, -4096, 15625, -46656, 117649, 0, 1, -128, 2187, -16384, 78125, -279936, 823543, -2097152, 0, 1, -256, 6561, -65536, 390625, -1679616, 5764801, -16777216, 43046721
Offset: 1
Examples
The first rows of the triangle (starting at n=1): 0, 1, 0, 1, -2, 0, 1, -4, 9, 0, 1, -8, 27, -64, 0, 1, -16, 81, -256, 625, 0, 1, -32, 243, -1024, 3125, -7776,
Links
- Stanislav Sykora, Table of n, a(n) for rows 1..100
- S. Sykora, An Abel's Identity and its Corollaries, Stan's Library, Volume V, 2014, DOI 10.3247/SL5Math14.004. See eq.(11), with b=1.
Crossrefs
Programs
-
PARI
seq(nmax,b)={my(v,n,k,irow); v = vector((nmax+1)*(nmax+2)/2-1); for(n=1,nmax,irow=n*(n+1)/2;v[irow]=0; for(k=1,n,v[irow+k]=(-1)^(k-1)*(k*b)^(n-1););); return(v);} a=seq(100,1);
Comments