A076024 a(n) = (2^n + 4)*(2^n - 1)/6.
0, 1, 4, 14, 50, 186, 714, 2794, 11050, 43946, 175274, 700074, 2798250, 11188906, 44747434, 178973354, 715860650, 2863377066, 11453377194, 45813246634, 183252462250, 733008800426, 2932033104554, 11728128223914, 46912504507050, 187650001250986, 750599971449514
Offset: 0
Examples
a(12) = 2798250 means that for the 12th folding of paper in half that 2798250 times as much material has been lost to potential folding as was lost on the first fold. [corrected by _Rick L. Shepherd_, May 08 2003]
References
- Britney C. Gallivan, How to fold paper in half twelve times (an "impossible challenge" solved and explained), Historical Society of Pomona Valley, Pomona California, (2002)
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Eric Weisstein's World of Mathematics, Folding
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8).
Crossrefs
Cf. A007582.
Programs
-
GAP
List([0..30], n-> (2^n +4)*(2^n -1)/6) # G. C. Greubel, May 04 2019
-
Magma
[(2^n +4)*(2^n -1)/6 : n in [0..30]]; // Wesley Ivan Hurt, Jun 12 2014
-
Maple
A076024:=n->(2^n + 4)*(2^n - 1)/6; seq(A076024(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
-
Mathematica
Table[(2^n+4)*(2^n-1)/6, {n,0,30}] (* Wesley Ivan Hurt, Jun 12 2014 *)
-
PARI
a(n) = 1<<(2*n-1)\3 + 1<<(n-1); \\ Kevin Ryde, Nov 26 2022 [replacing previous incorrect code]
-
Sage
[(2^n +4)*(2^n -1)/6 for n in (0..30)] # G. C. Greubel, May 04 2019
Formula
a(n) = Sum_{k <= n} A007582(k).
G.f.: x*(1-3*x)/((1-x)*(1-2*x)*(1-4*x)).
E.g.f.: (3*exp(2*x) + exp(4*x) - 4*exp(x))/6 = (exp(2*x)*(2*cosh(x) - sinh(x)) - 2)/3.
a(n) = Sum_{k=0..n} C(n, k)*(3^(k-1) + 1 - 4*0^k/3)/2.
a(n) = Sum_{k=0..n} C(n, k+1)*(3^k + 1).
a(n) = Sum_{i < n} a(i) + A073724(n-1). - Ivan N. Ianakiev, Jun 12 2014
Comments