A076046 Ramanujan-Nagell numbers: the triangular numbers (of the form a*(a+1)/2) which are also of the form 2^b - 1.
0, 1, 3, 15, 4095
Offset: 1
Examples
4095 can be written as 90*(90+1)/2, but also as 2^12 - 1.
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd, 1999. See Chapter 6.
- T. Nagell. The Diophantine equation x^2 + 7 = 2^n. Nordisk Mat. Tidskr., Vol. 30 (1948), pp. 62-64; Ark. Math., Vol. 4 (1960), pp. 185-187.
Links
- Yann Bugeaud and T. N. Shorey. On the number of solutions of the generalized Ramanujan-Nagell equation, J. reine angew. Math., Vol. 539 (2001), pp. 55-74.
- Helmut Hasse, Uber eine diophantische Gleichung von Ramanujan-Nagell und ihre Verallgemeinerung, Nagoya Math. J., Vol. 27 (1966), pp. 77-102.
- Eric Weisstein's World of Mathematics, Ramanujan's Square Equation.
Programs
-
Mathematica
Reap[For[b = 0, b <= 12, b++, If[IntegerQ[(Sqrt[2^(b + 3) - 7] - 1)/2], Sow[2^b - 1]]]][[2, 1]] (* Jean-François Alcover, Jul 05 2017 *) Select[Accumulate[Range[0,200]],IntegerQ[Log[2,#+1]]&] (* Harvey P. Dale, Aug 27 2019 *)
Comments