A060728 Numbers n such that Ramanujan's equation x^2 + 7 = 2^n has an integer solution.
3, 4, 5, 7, 15
Offset: 1
Examples
The fifth and ultimate solution to Ramanujan's equation is obtained for the 15th power of 2, so that we have x^2 + 7 = 2^15 yielding x = 181.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
- J. Roberts, Lure of the Integers. pp. 90-91, MAA 1992.
- Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts (2002): 96-98.
Links
- T. Skolem, S. Chowla and D. J. Lewis, The Diophantine Equation 2^(n+2)-7=x^2 and Related Problems. Proc. Amer. Math. Soc. 10 (1959) 663-669. [_M. F. Hasler_, Feb 23 2009]
- Anonymous, Developing a general 2nd degree Diophantine Equation x^2 + p = 2^n
- M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM: item 31: A Ramanujan Problem (R. Schroeppel)
- Curtis Bright, Solving Ramanujan's Square Equation Computationally
- Spencer De Chenne, The Ramanujan-Nagell Theorem: Understanding the Proof
- T. Do, Developing A General 2nd Degree Diophantine Equation x^2 + p = 2^n
- A. Engel, Problem-Solving Strategies. p. 126.
- Gerry Myerson, Bibliography
- T. Nagell, The Diophantine equation x^2 + 7 = 2^n, Ark. Mat. 4 (1961), no. 2-3, 185-187.
- S. Ramanujan, Journal of the Indian Mathematical Society, Question 464(v,120)
- Eric Weisstein's World of Mathematics, Ramanujan's Square Equation
- Eric Weisstein's World of Mathematics, Diophantine Equation 2nd Powers
- Wikipedia, Carmichael's Theorem
- Wikipedia, Diophantine equation
Programs
-
Magma
[n: n in [0..100] | IsSquare(2^n-7)]; // Vincenzo Librandi, Jan 07 2014
-
Mathematica
ramaNagell[n_] := Reduce[x^2 + 7 == 2^n, x, Integers] =!= False; Select[ Range[100], ramaNagell] (* Jean-François Alcover, Sep 21 2011 *)
-
PARI
is(n)=issquare(2^n-7) \\ Anders Hellström, Dec 12 2015
Formula
Extensions
Added keyword "full", M. F. Hasler, Feb 23 2009
Comments