A107920
Lucas and Lehmer numbers with parameters (1 +- sqrt(-7))/2.
Original entry on oeis.org
0, 1, 1, -1, -3, -1, 5, 7, -3, -17, -11, 23, 45, -1, -91, -89, 93, 271, 85, -457, -627, 287, 1541, 967, -2115, -4049, 181, 8279, 7917, -8641, -24475, -7193, 41757, 56143, -27371, -139657, -84915, 194399, 364229, -24569, -753027, -703889, 802165, 2209943, 605613, -3814273
Offset: 0
G.f. = x + x^2 - x^3 - 3*x^4 - x^5 + 5*x^6 + 7*x^7 - 3*x^8 - 17*x^9 - 11*x^10 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Christian Ballot, Lucasnomial Fuss-Catalan Numbers and Related Divisibility Questions, J. Int. Seq., Vol. 21 (2018), Article 18.6.5.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- F. Beukers, The multiplicity of binary recurrences, Compositio Mathematica, Tome 40 (1980) no. 2 , p. 251-267. See Theorem 2 p. 259.
- Y. Bilu, G. Hanrot, P. M. Voutier and M. Mignotte, Existence of primitive divisors of Lucas and Lehmer numbers, [Research Report] RR-3792, INRIA. 1999, pp.41, HAL Id : inria-00072867.
- M. Mignotte, Propriétés arithmétiques des suites récurrentes, Besançon, 1988-1989, see p. 14. In French.
- Ronald Orozco López, Deformed Differential Calculus on Generalized Fibonacci Polynomials, arXiv:2211.04450 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Lehmer Number
- Wikipedia, Lucas Sequence
- Index entries for linear recurrences with constant coefficients, signature (1,-2).
- Index entries for sequences related to Chebyshev polynomials.
-
[0] cat [n le 2 select 1 else Self(n-1)-2*Self(n-2): n in [1..45]]; // Vincenzo Librandi, Nov 27 2015
-
a:= n-> (Matrix([[1,1],[ -2,0]])^n)[1,2]: seq(a(n), n=0..45); # Alois P. Heinz, Sep 03 2008
-
LinearRecurrence[{1, -2}, {0, 1}, 50] (* Vincenzo Librandi, Nov 27 2015 *)
a[ n_] := Im[ ((1 + Sqrt[-7]) / 2)^n // FullSimplify] 2 / Sqrt[7]; (* Michael Somos, Jan 19 2017 *)
a[n_] := If[n < 2, n, Hypergeometric2F1[1 - n/2, (1 - n)/2, 1 - n, 8]];
Table[a[n], {n, 0, 45}] (* Peter Luschny, Feb 23 2018 *)
-
{a(n) = imag(quadgen(-7)^n)};
-
my(x='x+O('x^100)); concat(0, Vec(x/(1-x+2*x^2))) \\ Altug Alkan, Dec 04 2015
-
[lucas_number1(n,1,2) for n in range(0, 46)] # Zerinvary Lajos, Apr 22 2009
A060728
Numbers n such that Ramanujan's equation x^2 + 7 = 2^n has an integer solution.
Original entry on oeis.org
The fifth and ultimate solution to Ramanujan's equation is obtained for the 15th power of 2, so that we have x^2 + 7 = 2^15 yielding x = 181.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
- J. Roberts, Lure of the Integers. pp. 90-91, MAA 1992.
- Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts (2002): 96-98.
- T. Skolem, S. Chowla and D. J. Lewis, The Diophantine Equation 2^(n+2)-7=x^2 and Related Problems. Proc. Amer. Math. Soc. 10 (1959) 663-669. [_M. F. Hasler_, Feb 23 2009]
- Anonymous, Developing a general 2nd degree Diophantine Equation x^2 + p = 2^n
- M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM: item 31: A Ramanujan Problem (R. Schroeppel)
- Curtis Bright, Solving Ramanujan's Square Equation Computationally
- Spencer De Chenne, The Ramanujan-Nagell Theorem: Understanding the Proof
- T. Do, Developing A General 2nd Degree Diophantine Equation x^2 + p = 2^n
- A. Engel, Problem-Solving Strategies. p. 126.
- Gerry Myerson, Bibliography
- T. Nagell, The Diophantine equation x^2 + 7 = 2^n, Ark. Mat. 4 (1961), no. 2-3, 185-187.
- S. Ramanujan, Journal of the Indian Mathematical Society, Question 464(v,120)
- Eric Weisstein's World of Mathematics, Ramanujan's Square Equation
- Eric Weisstein's World of Mathematics, Diophantine Equation 2nd Powers
- Wikipedia, Carmichael's Theorem
- Wikipedia, Diophantine equation
A227078
The Ramanujan-Nagell squares: A038198(n)^2.
Original entry on oeis.org
1, 9, 25, 121, 32761
Offset: 0
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
- L. J. Mordell, Diophantine Equations, Academic Press, NY, 1969, p. 205.
A180445
All positive solutions, x, for each of two Diophantine equations noted by Richard K. Guy.
Original entry on oeis.org
- R. K. Guy, editor, Western Number Theory Problems, 1985-12-21 & 23, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission. See Problem 85:08.
- Richard K. Guy, The Strong Law of Small Numbers (example #29).
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
A328129
Finite cardinalities of equivalence classes of real intervals with respect to the symmetric transitive closure of R(x,y) = "x is an integer multiple of y".
Original entry on oeis.org
1, 2, 4, 7, 12, 24, 41, 58, 75, 92, 109, 214, 319, 424, 529, 634, 1176, 1718, 2260, 2802, 3344, 3886, 4428, 4970, 9411
Offset: 1
The real interval [1.0, 2.0] has equivalence classes including {1.5} and {1.0, 2.0}, so |{1.5}| = 1 and |{1.0, 2.0}| = 2 are in the sequence.
To establish whether 3 is in the sequence, let x be the smallest member (by absolute value) of an equivalence class E on an interval I. E has cardinality greater than 1 only if 2*x is in I. If 3*x is not in I, there are no other multiples or submultiples of {x, 2*x} in I, so E has cardinality less than 3. Otherwise 3*x is in I, 3/2*x is in I, so {x, 2*x, 3*x, 3/2*x} is a subset of E and E has cardinality greater than 3. So 3 is not in the sequence.
Equivalence classes of cardinality 7 take the form {x, 2*x, 3*x, 3/2*x, 4*x, 4/3*x, 8/3*x} for real x <> 0.
Equivalence classes of cardinality 12 take the form {x, 2*x, 3*x, 3/2*x, 4*x, 4/3*x, 8/3*x, 9/2*x, 9/4*x, 9/8*x, 27/8*x, 27/16*x} for real x <> 0.
In the table below the columns are as follows. |E|: cardinality of equivalence class; I_min: smallest interval with lower bound 1 that has such an equivalence class; I_max: largest interval with lower bound 1 that has such an equivalence class; u_max: upper bound of I_max in decimal notation.
|E| I_min I_max u_max
1 [1, 1] (1, 4) 4.0
2 [1, 2] (1, 9/2) 4.5
4 [1, 3] (1, 16/3) 5.3333333333...
7 [1, 4] (1, 81/16) 5.0625
12 [1, 9/2] (1, 50/9) 5.5555555555...
24 [1, 5] (1, 6561/1280) 5.12578125
41 [1, 81/16] (1, 531441/102400) 5.189853515625
58 [1, 6561/1280] (1, 3^16/(2^16*5^3)) 5.2547266845...
...
214 [1, 16/3] (1, 2^52*5^8/3^43) 5.3592727015...
...
oo (1, 27/5) not defined not defined
-
{ my (points = Set([1]), newmax);
print (1," ",matsize(points)[2]);
for (n=2,25,
newmax = vecmin(setminus(setbinop((x,y)->x*y,[2,3,5],points),points));
points = setunion(setbinop((x,y)->x/y,[newmax],points),points);
print (n," ",matsize(points)[2]); )} \\ Peter Munn, Jun 29 2022
Showing 1-5 of 5 results.
Comments