cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076118 a(n) = Sum_{k=n/2..n} k * (-1)^(n-k) * C(k,n-k).

Original entry on oeis.org

0, 1, 1, -1, -3, -2, 2, 5, 3, -3, -7, -4, 4, 9, 5, -5, -11, -6, 6, 13, 7, -7, -15, -8, 8, 17, 9, -9, -19, -10, 10, 21, 11, -11, -23, -12, 12, 25, 13, -13, -27, -14, 14, 29, 15, -15, -31, -16, 16, 33, 17, -17, -35, -18, 18, 37, 19, -19, -39, -20, 20, 41, 21, -21, -43, -22, 22, 45, 23, -23, -47, -24, 24, 49, 25, -25, -51, -26, 26
Offset: 0

Views

Author

Henry Bottomley, Oct 31 2002

Keywords

Comments

Piecewise linear depending on residue modulo 6. Might be described as an inverse Catalan transform of the nonnegative integers.
Number of compositions of n consisting of at most two parts, all congruent to {0,2} mod 3 (offset 1). - Vladeta Jovovic, Mar 10 2005

Examples

			a(10) = -5*1 + 6*15 - 7*35 + 8*28 - 9*9 + 10*1 = -5 + 90 -245 + 224 - 81 + 10 = -7.
		

Crossrefs

Cf. A003881, A038608, A078028, A099254 (partial sums).
See A151842 for a version without signs.

Programs

  • Maple
    A076118:=n->add(k*(-1)^(n-k)*binomial(k,n-k), k=floor(n/2)..n); seq(A076118(n), n=0..50); # Wesley Ivan Hurt, May 08 2014
    f:= gfun:-rectoproc({a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n), a(0)=0,a(1)=1,a(2)=1,a(3)=-1}, a(n), remember):
    map(f, [$0..100]); # Robert Israel, Aug 07 2015
  • Mathematica
    Table[Sum[k*(-1)^(n - k)*Binomial[k, n - k], {k, Floor[n/2], n}], {n,
    0, 50}] (* Wesley Ivan Hurt, May 08 2014 *)
  • PARI
    {a(n)=local(k=n%3); n=n\3; (-1)^n*((k>0)+n+(k==1)*n)} /* Michael Somos, Jul 14 2006 */
    
  • PARI
    {a(n)=if(n<0, n=-1-n); polcoeff(x*(1-x)/(1-x+x^2)^2+x*O(x^n),n)} /* Michael Somos, Jul 14 2006 */

Formula

a(3n) = -a(3n-1) = A038608(n).
a(n) = ( 2n*sin((n+1/2)*Pi/3) + sin(n*Pi/3)/sin(Pi/3) )/3.
a(3n) = n*(-1)^n; a(3n+1) = (2n+1)*(-1)^n; a(3n+2) = (n+1)*(-1)^n.
a(n) = Sum{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*(n-k). - Paul Barry, Nov 12 2004
From Michael Somos, Jul 14 2006: (Start)
Euler transform of length 6 sequence [ 1, -2, -2, 0, 0, 2].
G.f.: x(1-x)/(1-x+x^2)^2 = x*(1-x^2)^2*(1-x^3)^2/((1-x)*(1-x^6)^2).
a(-1-n)=a(n). (End)
a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n). - Robert Israel, Aug 07 2015
a(n) = A099254(n-1)-A099254(n-2). - R. J. Mathar, Apr 01 2018
Sum_{n>=1} 1/a(n) = Pi/4 (A003881). - Amiram Eldar, May 10 2025