A076214 Decimal expansion of C = Sum_{k>=0} 1/2^(2^k-1).
1, 6, 3, 2, 8, 4, 3, 0, 1, 8, 0, 4, 3, 7, 8, 6, 2, 8, 7, 4, 1, 6, 1, 5, 9, 4, 7, 5, 0, 6, 1, 0, 5, 0, 4, 4, 3, 4, 0, 6, 6, 2, 2, 7, 5, 1, 8, 4, 1, 1, 0, 5, 6, 0, 8, 6, 8, 2, 4, 2, 1, 8, 0, 7, 6, 8, 6, 1, 1, 1, 2, 2, 8, 3, 8, 9, 1, 1, 0, 6, 0, 0, 1, 2, 0, 9, 7, 0, 6, 2, 6, 4, 9, 6, 7, 9, 4, 5, 3, 1, 2, 3, 5, 1, 1
Offset: 1
Examples
1.632843018043786287416159475061050443406622751841105608682421807686111...
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- Boris Adamczewski, The Many Faces of the Kempner Number, Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.15.
- Michael Ian Shamos, Property Enumerators and a Partial Sum Theorem, 2011; alternative link.
Programs
-
Mathematica
Take[ RealDigits[ 2*NSum[1/2^2^k, {k, 0, Infinity}, WorkingPrecision -> 120]][[1]], 105] (* Jean-François Alcover, Nov 15 2011 *)
-
PARI
default(realprecision, 20080); x=suminf(k=0, 1/2^(2^k)); x*=2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b076214.txt", n, " ", d)); \\ Harry J. Smith, May 09 2009
Formula
Equals 2 * Sum_{k>=0} 1/2^(2^k) = 2 * A007404. - Harry J. Smith, May 09 2009
From Amiram Eldar, Mar 12 2024: (Start)
Equals 1 + 2 * A078585.
Equals 1 + Sum_{k>=1} floor(log_2(k))/2^k (Shamos, 2011, p. 8). (End)
Comments