cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076265 a(n) = Product_{i=1..n} prime(i)^prime(i).

Original entry on oeis.org

4, 108, 337500, 277945762500, 79301169838123235887500, 24018350267611933650627567399079537500, 19868946365457062696924774946056904675112420776003728137500
Offset: 1

Views

Author

Jeff Burch, Nov 23 2002

Keywords

Comments

Denominator of Sum_{i=1..n} 1/(p(i)^p(i)), where p(i) = i-th prime. The numerators are in A117579. E.g., 1/4, 31/108, 96983/337500, 79870008269/277945762500, ... - Jonathan Vos Post, Mar 29 2006
Equally, denominator of Sum_{k=1..n}(-1)^(k+1) * 1/p(k)^p(k), where p(k) = prime(k). - Alexander Adamchuk, Aug 22 2006
C = Sum_{k>=1} (-1)^(k+1)/(prime(k)^prime(k)) = 1/2^2 - 1/3^3 + 1/5^5 - 1/7^7 + 1/11^11 - 1/13^13 + ... A122147 is the decimal expansion of C = 0.213281748700785698255627... - Alexander Adamchuk, Aug 22 2006
Hyperprimorials, from primorials by analogy with hyperfactorials. See A006939. - Matthew Campbell, Jul 30 2015

Examples

			A122148(n)/a(n) begins 1/4, 23/108, 71983/337500, ... - _Alexander Adamchuk_, Aug 22 2006
		

Crossrefs

Programs

  • Mathematica
    Table[Denominator[Sum[1/Prime[k]^Prime[k],{k,1,n}]],{n,1,10}] (* Alexander Adamchuk, Aug 22 2006 *)
    Denominator[Accumulate[1/#^#&/@Prime[Range[10]]]] (* Harvey P. Dale, Jan 24 2013 *)
  • PARI
    a(n)=prod(i=1,n,prime(i)^prime(i)) \\ Charles R Greathouse IV, Aug 05 2015

Formula

log a(n) ~ (n^2 log^2 n)/2. - Charles R Greathouse IV, Sep 14 2015

Extensions

Entry revised by N. J. A. Sloane, Apr 10 2006
Edited by N. J. A. Sloane, Aug 04 2008 at the suggestion of R. J. Mathar