cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A064896 Numbers of the form (2^(m*r)-1)/(2^r-1) for positive integers m, r.

Original entry on oeis.org

1, 3, 5, 7, 9, 15, 17, 21, 31, 33, 63, 65, 73, 85, 127, 129, 255, 257, 273, 341, 511, 513, 585, 1023, 1025, 1057, 1365, 2047, 2049, 4095, 4097, 4161, 4369, 4681, 5461, 8191, 8193, 16383, 16385, 16513, 21845, 32767, 32769, 33825, 37449, 65535, 65537
Offset: 1

Views

Author

Marc LeBrun, Oct 11 2001

Keywords

Comments

Binary expansion of n consists of single 1's diluted by (possibly empty) equal-sized blocks of 0's.
According to Stolarsky's Theorem 2.1, all numbers in this sequence are sturdy numbers; this sequence is a subsequence of A125121. - T. D. Noe, Jul 21 2008
These are the numbers k > 0 for which k + 2^m = k*2^n + 1 has a solution m,n > 0. For k > 1, these are numbers k such that (k - 2^x)*2^y + 1 = k has a solution in positive integers x,y. In other words, (k - 1)/(k - 2^x) = 2^y for some x,y > 0. If t = (2^m - 1)/(2^n - 1) is a term of this sequence (i.e. if and only if n|m), then t' = t + 2^m = t*2^n + 1 is also a term. Primes in this sequence (A245730) include: all Mersenne primes (A000668), all Fermat primes (A019434), and other primes (73, 262657, 4432676798593, ...). - Thomas Ordowski, Feb 14 2024

Examples

			73 is included because it is 1001001 in binary, whose 1's are diluted by blocks of two 0's.
		

Crossrefs

Cf. A076270 (k=3), A076275 (k=4), A076284 (k=5), A076285 (k=6), A076286 (k=7), A076287 (k=8), A076288 (k=9), A076289 (k=10).
Primes in this sequence: A245730.

Programs

  • Maple
    f := proc(p) local m,r,t1; t1 := {}; for m from 1 to 10 do for r from 1 to 10 do t1 := {op(t1), (p^(m*r)-1)/(p^r-1)}; od: od: sort(convert(t1,list)); end; f(2); # very crude!
    # Alternative:
    N:= 10^6: # to get all terms <= N
    A:= sort(convert({1,seq(seq((2^(m*r)-1)/(2^r-1),m=2..1/r*ilog2(N*(2^r-1)+1)),r=1..ilog2(N-1))},list)); # Robert Israel, Jun 12 2015
  • PARI
    lista(nn) = {v = [1]; x = (2^nn-1); for (m=2, nn, r = 1; while ((y = (2^(m*r)-1)/(2^r-1)) <=x, v = Set(concat(v, y)); r++);); v;} \\ Michel Marcus, Jun 12 2015

Formula

A064894(a(n)) = A056538(n).

A076270 Numbers of the form (3^{mr}-1)/(3^r-1) for positive integers m, r.

Original entry on oeis.org

1, 4, 10, 13, 28, 40, 82, 91, 121, 244, 364, 730, 757, 820, 1093, 2188, 3280, 6562, 6643, 7381, 9841, 19684, 20440, 29524, 59050, 59293, 66430, 88573, 177148, 265720, 531442, 532171, 538084, 551881, 597871, 797161, 1594324, 2391484, 4782970, 4785157, 5380840
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Crossrefs

Cf. A064896 (k=2), A076270 (k=3), A076275 (k=4), A076284 (k=5), A076286 (k=7), A076287 (k=8), A076288 (k=9), A076289 (k=10).

Programs

  • Maple
    f := proc(p) local m,r,t1; t1 := {}; for m from 1 to 10 do for r from 1 to 10 do t1 := {op(t1), (p^(m*r)-1)/(p^r-1)}; od: od: sort(convert(t1,list)); end; f(3); # very crude!

A076286 Numbers of the form (7^{mr}-1)/(7^r-1) for positive integers m, r.

Original entry on oeis.org

1, 8, 50, 57, 344, 400, 2402, 2451, 2801, 16808, 19608, 117650, 117993, 120100, 137257, 823544, 960800, 5764802, 5767203, 5884901, 6725601, 40353608, 40471600, 47079208, 282475250, 282492057, 288360150, 329554457, 1977326744, 2306881200, 13841287202
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Crossrefs

Cf. A064896 (k=2), A076270 (k=3), A076275 (k=4), A076284 (k=5), A076285 (k=6), A076287 (k=8), A076288 (k=9), A076289 (k=10).

Programs

  • Maple
    [1,seq(seq((7^(d+r)-1)/(7^r-1),r = sort(convert(numtheory:-divisors(d),list),`>`)),d=1..20)]; # Robert Israel, Aug 27 2018

A076287 Numbers of the form (8^{mr}-1)/(8^r-1) for positive integers m, r.

Original entry on oeis.org

1, 9, 65, 73, 513, 585, 4097, 4161, 4681, 32769, 37449, 262145, 262657, 266305, 299593, 2097153, 2396745, 16777217, 16781313, 17043521, 19173961, 134217729, 134480385, 153391689, 1073741825, 1073774593, 1090785345, 1227133513, 8589934593, 9817068105
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Comments

Numbers which in base 8 contain only 0's and 1's, with equally spaced 1's. - Robert Israel, Jan 15 2019

Crossrefs

Cf. A064896 (k=2), A076270 (k=3), A076275 (k=4), A076284 (k=5), A076285 (k=6), A076286 (k=7), A076288 (k=9), A076289 (k=10).

Programs

  • Maple
    1, seq(seq((8^(k+r)-1)/(8^r-1), r = ListTools:-Reverse(sort(convert(numtheory:-divisors(k),list)))), k=1..20); # Robert Israel, Jan 15 2019

A076275 Numbers of the form (4^{mr}-1)/(4^r-1) for positive integers m, r.

Original entry on oeis.org

1, 5, 17, 21, 65, 85, 257, 273, 341, 1025, 1365, 4097, 4161, 4369, 5461, 16385, 21845, 65537, 65793, 69905, 87381, 262145, 266305, 349525, 1048577, 1049601, 1118481, 1398101, 4194305, 5592405, 16777217, 16781313, 16843009, 17043521, 17895697, 22369621
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Crossrefs

Cf. A064896 (k=2), A076270 (k=3), A076284 (k=5), A076285 (k=6), A076286 (k=7), A076287 (k=8), A076288 (k=9), A076289 (k=10).

A076284 Numbers of the form (5^{mr}-1)/(5^r-1) for positive integers m, r.

Original entry on oeis.org

1, 6, 26, 31, 126, 156, 626, 651, 781, 3126, 3906, 15626, 15751, 16276, 19531, 78126, 97656, 390626, 391251, 406901, 488281, 1953126, 1968876, 2441406, 9765626, 9768751, 10172526, 12207031, 48828126, 61035156, 244140626, 244156251, 244531876, 246109501
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Crossrefs

Cf. A064896 (k=2), A076270 (k=3), A076275 (k=4), A076285 (k=6), A076286 (k=7), A076287 (k=8), A076288 (k=9), A076289 (k=10).

A076288 Numbers of the form (9^{mr}-1)/(9^r-1) for positive integers m, r.

Original entry on oeis.org

1, 10, 82, 91, 730, 820, 6562, 6643, 7381, 59050, 66430, 531442, 532171, 538084, 597871, 4782970, 5380840, 43046722, 43053283, 43584805, 48427561, 387420490, 387952660, 435848050, 3486784402, 3486843451, 3530369206, 3922632451, 31381059610, 35303692060
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2002

Keywords

Crossrefs

Cf. A064896 (k=2), A076270 (k=3), A076275 (k=4), A076284 (k=5), A076285 (k=6), A076286 (k=7), A076287 (k=8), A076289 (k=10).

A265181 Prime numbers resulting from the concatenation of at least two copies of a cubic number followed by a trailing "1.".

Original entry on oeis.org

881, 27271, 7297291, 133113311, 337533751, 19683196831, 42875428751, 68921689211, 1038231038231, 1574641574641, 2053792053791, 2744274427441, 4218754218751, 6859685968591, 7290007290001, 7297297297291, 106120810612081, 224809122480911, 274400027440001, 280322128032211, 317652331765231, 500021150002111, 812060181206011, 1251251251251251, 1757617576175761, 1968319683196831, 5931959319593191
Offset: 1

Views

Author

Thomas S. Pedigo, Dec 03 2015

Keywords

Comments

Subsequence of A030430 (primes of the form 10n+1). - Michel Marcus, Dec 04 2015
If m is a term then (m-1)/10 is divisible by a cube (A000578) and the resulting quotient, different from 1, is in A076289. - Michel Marcus, Dec 05 2015
Without the "repeated at least twice" constraint, A168147 would be a subsequence. - Michel Marcus, Dec 05 2015

Examples

			8 = 2^3; 881 is prime.
27 = 3^3; 27271 is prime.
		

Crossrefs

Programs

  • Maple
    N:= 20: # to get all terms with at most N digits
    M:= floor((N-1)/2):
    res:= {}:
    for s from 1 to floor(10^(M/3)) do
       x:= s^3;
       m:= 1+ilog10(x);
       for k from 2 to floor((N-1)/m) do
         p:= x*add(10^(1+m*i),i=0..k-1)+1;
         if isprime(p) then res:= res union {p} fi;
       od
    od:
    sort(convert(res,list)); # Robert Israel, Jan 13 2016
  • Mathematica
    Take[Sort@ Flatten[Select[#, PrimeQ] & /@ Table[FromDigits@ Append[Flatten@ IntegerDigits@ Table[n^3, {#}], 1] & /@ Range[2, 20], {n, 1, 300}] /. {} -> Nothing], 27] (* Michael De Vlieger, Jan 05 2016 *)
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A265181_gen(): # generator of terms
        return filter(isprime,(int(str(k**3)*2)*10+1 for k in count(1)))
    A265181_list = list(islice(A265181_gen(),20)) # Chai Wah Wu, Feb 20 2023
Showing 1-8 of 8 results.