cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076294 Consider all Pythagorean triples (X,X+7,Z); sequence gives Z values.

Original entry on oeis.org

5, 7, 13, 17, 35, 73, 97, 203, 425, 565, 1183, 2477, 3293, 6895, 14437, 19193, 40187, 84145, 111865, 234227, 490433, 651997, 1365175, 2858453, 3800117, 7956823, 16660285, 22148705, 46375763, 97103257, 129092113, 270297755, 565959257, 752403973, 1575410767
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2*m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			17 is in the sequence as the hypotenuse of the (8,15,17) triangle.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{5,7,13,17,35,73},40] (* Harvey P. Dale, Mar 19 2019 *)
  • PARI
    Vec((1 - x)*(5 + 12*x + 25*x^2 + 12*x^3 + 5*x^4) / (1 - 6*x^3 + x^6) + O(x^50)) \\ Colin Barker, Apr 25 2017

Formula

a(n) = 6*a(n-3)-a(n-6) = sqrt((A076293(n)^2+49)/2) = sqrt(A076295(n)^2 + A076296(n)^2).
a(3n+1) = 7*A001653(n).
G.f.: (1 - x)*(5 + 12*x + 25*x^2 + 12*x^3 + 5*x^4) / (1 - 6*x^3 + x^6). - Colin Barker, Apr 25 2017