cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076296 Consider all Pythagorean triples (X,X+7,Z); sequence gives X values.

Original entry on oeis.org

-3, 0, 5, 8, 21, 48, 65, 140, 297, 396, 833, 1748, 2325, 4872, 10205, 13568, 28413, 59496, 79097, 165620, 346785, 461028, 965321, 2021228, 2687085, 5626320, 11780597, 15661496, 32792613, 68662368, 91281905, 191129372, 400193625, 532029948, 1113983633
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.
From Klaus Brockhaus, Feb 18 2009: (Start)
Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
Lim_{n -> infinity} a(n)/a(n-1) = (9+4*sqrt(2))/7 for n mod 3 = {1, 2}.
Lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 3 = 0. (End)
For the generic case x^2 + (x+p)^2 = y^2 with p=2*m^2-1 a prime number in A066436, m >= 2, the x values are given by the sequence defined by: a(n) = 6*a(n-3) - a(n-6) + 2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21. Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009
For the generic case x^2 + (x + p)^2 = y^2 with p = 2*m^2 - 1 a prime number, m>=2, the first three consecutive solutions are: (0;p), (2*m+1; 2*m^2+2*m+1), (6*m^2-10*m+4; 10*m^2-14*m+5) and the other solutions are defined by: (X(n); Y(n))= (3*X(n-3)+2*Y(n-3)+p; 4*X(n-3)+3*Y(n-3)+2*p). - Mohamed Bouhamida, Aug 20 2019

Examples

			8 is in the sequence as the shorter leg of the (8,15,17) triangle.
		

Crossrefs

Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7). - Klaus Brockhaus, Feb 18 2009

Programs

  • Magma
    I:=[-3,0,5,8,21,48,65]; [n le 7 select I[n] else Self(n-1) +6*Self(n-3) -6*Self(n-4) -Self(n-6) +Self(n-7): n in [1..30]]; // G. C. Greubel, May 04 2018
  • Mathematica
    CoefficientList[Series[(3-3x-5x^2-21x^3+5x^4+3x^5+4x^6)/(-1+x+6x^3-6x^4-x^6+x^7),{x,0,50}],x] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
    LinearRecurrence[{1,0,6,-6,0,-1,1}, {-3,0,5,8,21,48,65}, 50] (* T. D. Noe, Feb 07 2012 *)
  • PARI
    x='x+O('x^30); Vec((-3+3*x+5*x^2+21*x^3-5*x^4-3*x^5-4*x^6)/((1-x)*(1-6*x^3 +x^6))) \\ G. C. Greubel, May 04 2018
    

Formula

a(n) = 6a(n-3) - a(n-6) + 14 = (A076293(n) - 7)/2.
a(n) = sqrt(A076294(n)^2 - A076295(n)^2) = A076295(n) - 7.
a(3*n+1) = 7*A001652(n).
From Mohamed Bouhamida, Jul 06 2007: (Start)
a(n) = 5*(a(n-3) + a(n-6)) - a(n-9) + 28.
a(n) = 7*(a(n-3) - a(n-6)) + a(n-9). (End)
G.f.: (-3 + 3*x + 5*x^2 + 21*x^3 - 5*x^4 - 3*x^5 - 4*x^6)/((1-x)*(1 - 6*x^3 + x^6)). - Klaus Brockhaus, Feb 18 2009

Extensions

More terms from Klaus Brockhaus, Feb 18 2009

A076293 Numbers k where the root mean square (RMS) of k and 7 is an integer, i.e., sqrt((k^2 + 7^2)/2) is an integer.

Original entry on oeis.org

1, 7, 17, 23, 49, 103, 137, 287, 601, 799, 1673, 3503, 4657, 9751, 20417, 27143, 56833, 118999, 158201, 331247, 693577, 922063, 1930649, 4042463, 5374177, 11252647, 23561201, 31322999, 65585233, 137324743, 182563817, 382258751, 800387257, 1064059903
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Examples

			17 is in the sequence since sqrt((17^2 + 7^2)/2) = 13 is an integer.
		

Crossrefs

Programs

  • Mathematica
    Column[LinearRecurrence[{0, 0, 6, 0, 0, -1}, {1, 7, 17, 23, 49, 103}, 35] ] (* Vincenzo Librandi, Jul 30 2017 *)
  • PARI
    Vec((x+1)*(x^2+3*x+1)^2/(x^6-6*x^3+1) + O(x^100)) \\ Colin Barker, Sep 14 2014

Formula

a(n) = 6a(n-3) - a(n-6) = sqrt(2*A076294(n)^2 - 49) = A076295(n) + A076296(n).
a(3n+1) = 7*A002315(n).
G.f.: (x+1)*(x^2+3*x+1)^2 / (x^6-6*x^3+1). - Colin Barker, Sep 14 2014

Extensions

More terms from Colin Barker, Sep 14 2014

A076295 Consider all Pythagorean triples (Y-7,Y,Z); sequence gives Y values.

Original entry on oeis.org

4, 7, 12, 15, 28, 55, 72, 147, 304, 403, 840, 1755, 2332, 4879, 10212, 13575, 28420, 59503, 79104, 165627, 346792, 461035, 965328, 2021235, 2687092, 5626327, 11780604, 15661503, 32792620, 68662375, 91281912, 191129379, 400193632, 532029955, 1113983640
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.

Examples

			15 is in the sequence as the longer leg of the (8,15,17) triangle.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{4,7,12,15,28,55,72},40] (* Harvey P. Dale, Feb 02 2012 *)

Formula

a(n) =6a(n-3)-a(n-6)-14 =(A076293(n)+7)/2 =sqrt(A076294(n)^2-A076296(n)^2) =A076296(n)+7.
a(3n+1) = 7*A046090(n).
a(0)=4, a(1)=7, a(2)=12, a(3)=15, a(4)=28, a(5)=55, a(6)=72, a(n)= a(n-1)+ 6*a(n-3)-6*a(n-4)-a(n-6)+a (n-7). - Harvey P. Dale, Feb 02 2012
G.f.: -(3*x^6-3*x^5-5*x^4-21*x^3+5*x^2+3*x+4) / ((x-1)*(x^6-6*x^3+1)). - Colin Barker, Sep 14 2014
Showing 1-3 of 3 results.