cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A118673 Positive solutions x to the equation x^2 + (x+71)^2 = y^2.

Original entry on oeis.org

0, 13, 160, 213, 280, 1113, 1420, 1809, 6660, 8449, 10716, 38989, 49416, 62629, 227416, 288189, 365200, 1325649, 1679860, 2128713, 7726620, 9791113, 12407220, 45034213, 57066960, 72314749, 262478800, 332610789, 421481416, 1529838729, 1938597916, 2456573889
Offset: 0

Views

Author

Mohamed Bouhamida, May 19 2006

Keywords

Comments

Consider all Pythagorean triples (x,x+71,y) ordered by increasing y; sequence gives x values.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2 the associated value in A066049, the x values are given by the sequence defined by: a(n) = 6*a(n-3) -a(n-6) + 2*p with a(0)=0, a(1)=2m+1, a(2)=6m^2-10m+4, a(3)=3p, a(4)=6m^2+10m+4, a(5)=40m^2-58m+21.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(0)=p, b(1)=2m^2+2m+1, b(2)=10m^2-14m+5, b(3)=5p, b(4)=10m^2+14m+5, b(5)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Crossrefs

Cf. A076296 (p=7), A118120 (p=17), A118674 (p=31), A129836 (p=97), A129992 (p=127), A129993 (p=199), A129991 (p=241), A129999 (p=337), A130004 (p=449), A130005 (p=577), A130013 (p=647), A130014 (p=881), A130017 (p=967).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1 - 6*x^3 +x^6)))); // G. C. Greubel, May 07 2018
  • Mathematica
    Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+71)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,13,160,213,280,1113,1420},100] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)
  • PARI
    a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 1,-1,0,-6,6,0,1]^n*[0;13;160;213;280;1113;1420])[1,1] \\ Charles R Greathouse IV, Apr 22 2016
    
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(13+147*x+53*x^2-11*x^3 -49*x^4 -11*x^5)/((1-x)*(1-6*x^3+x^6)))) \\ G. C. Greubel, May 07 2018
    

Formula

a(n) = 6*a(n-3) -a(n-6) +142 with a(0)=0, a(1)=13, a(2)=160, a(3)=213, a(4)=280, a(5)=1113.
O.g.f.: x*(13+147*x+53*x^2-11*x^3-49*x^4-11*x^5)/((1-x)*(1-6*x^3+x^6)). - R. J. Mathar, Jun 10 2008

Extensions

Edited by R. J. Mathar, Jun 10 2008

A076293 Numbers k where the root mean square (RMS) of k and 7 is an integer, i.e., sqrt((k^2 + 7^2)/2) is an integer.

Original entry on oeis.org

1, 7, 17, 23, 49, 103, 137, 287, 601, 799, 1673, 3503, 4657, 9751, 20417, 27143, 56833, 118999, 158201, 331247, 693577, 922063, 1930649, 4042463, 5374177, 11252647, 23561201, 31322999, 65585233, 137324743, 182563817, 382258751, 800387257, 1064059903
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Examples

			17 is in the sequence since sqrt((17^2 + 7^2)/2) = 13 is an integer.
		

Crossrefs

Programs

  • Mathematica
    Column[LinearRecurrence[{0, 0, 6, 0, 0, -1}, {1, 7, 17, 23, 49, 103}, 35] ] (* Vincenzo Librandi, Jul 30 2017 *)
  • PARI
    Vec((x+1)*(x^2+3*x+1)^2/(x^6-6*x^3+1) + O(x^100)) \\ Colin Barker, Sep 14 2014

Formula

a(n) = 6a(n-3) - a(n-6) = sqrt(2*A076294(n)^2 - 49) = A076295(n) + A076296(n).
a(3n+1) = 7*A002315(n).
G.f.: (x+1)*(x^2+3*x+1)^2 / (x^6-6*x^3+1). - Colin Barker, Sep 14 2014

Extensions

More terms from Colin Barker, Sep 14 2014

A076294 Consider all Pythagorean triples (X,X+7,Z); sequence gives Z values.

Original entry on oeis.org

5, 7, 13, 17, 35, 73, 97, 203, 425, 565, 1183, 2477, 3293, 6895, 14437, 19193, 40187, 84145, 111865, 234227, 490433, 651997, 1365175, 2858453, 3800117, 7956823, 16660285, 22148705, 46375763, 97103257, 129092113, 270297755, 565959257, 752403973, 1575410767
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.
For the generic case x^2+(x+p)^2=y^2 with p=2*m^2-1 a prime number in A066436, m>=2, the x values are given by the sequence defined by: a(n)=6*a(n-3)-a(n-6)+2p with a(1)=0, a(2)=2m+1, a(3)=6m^2-10m+4, a(4)=3p, a(5)=6m^2+10m+4, a(6)=40m^2-58m+21.Y values are given by the sequence defined by: b(n)=6*b(n-3)-b(n-6) with b(1)=p, b(2)=2*m^2+2m+1, b(3)=10m^2-14m+5, b(4)=5p, b(5)=10m^2+14m+5, b(6)=58m^2-82m+29. - Mohamed Bouhamida, Sep 09 2009

Examples

			17 is in the sequence as the hypotenuse of the (8,15,17) triangle.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,6,0,0,-1},{5,7,13,17,35,73},40] (* Harvey P. Dale, Mar 19 2019 *)
  • PARI
    Vec((1 - x)*(5 + 12*x + 25*x^2 + 12*x^3 + 5*x^4) / (1 - 6*x^3 + x^6) + O(x^50)) \\ Colin Barker, Apr 25 2017

Formula

a(n) = 6*a(n-3)-a(n-6) = sqrt((A076293(n)^2+49)/2) = sqrt(A076295(n)^2 + A076296(n)^2).
a(3n+1) = 7*A001653(n).
G.f.: (1 - x)*(5 + 12*x + 25*x^2 + 12*x^3 + 5*x^4) / (1 - 6*x^3 + x^6). - Colin Barker, Apr 25 2017

A076295 Consider all Pythagorean triples (Y-7,Y,Z); sequence gives Y values.

Original entry on oeis.org

4, 7, 12, 15, 28, 55, 72, 147, 304, 403, 840, 1755, 2332, 4879, 10212, 13575, 28420, 59503, 79104, 165627, 346792, 461035, 965328, 2021235, 2687092, 5626327, 11780604, 15661503, 32792620, 68662375, 91281912, 191129379, 400193632, 532029955, 1113983640
Offset: 0

Views

Author

Henry Bottomley, Oct 05 2002

Keywords

Comments

First two terms included for consistency with A076293.

Examples

			15 is in the sequence as the longer leg of the (8,15,17) triangle.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{4,7,12,15,28,55,72},40] (* Harvey P. Dale, Feb 02 2012 *)

Formula

a(n) =6a(n-3)-a(n-6)-14 =(A076293(n)+7)/2 =sqrt(A076294(n)^2-A076296(n)^2) =A076296(n)+7.
a(3n+1) = 7*A046090(n).
a(0)=4, a(1)=7, a(2)=12, a(3)=15, a(4)=28, a(5)=55, a(6)=72, a(n)= a(n-1)+ 6*a(n-3)-6*a(n-4)-a(n-6)+a (n-7). - Harvey P. Dale, Feb 02 2012
G.f.: -(3*x^6-3*x^5-5*x^4-21*x^3+5*x^2+3*x+4) / ((x-1)*(x^6-6*x^3+1)). - Colin Barker, Sep 14 2014

A129010 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+833)^2 = y^2.

Original entry on oeis.org

0, 124, 168, 187, 343, 399, 595, 624, 915, 952, 1260, 1372, 1768, 1827, 1975, 2499, 3135, 3367, 3468, 4312, 4620, 5712, 5875, 7524, 7735, 9499, 10143, 12427, 12768, 13624, 16660, 20352, 21700, 22287, 27195, 28987, 35343, 36292, 45895, 47124
Offset: 1

Views

Author

Mohamed Bouhamida, May 27 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+833, y); 833=7^2*17.
Corresponding values y of solutions (x, y) are in A156835.
lim_{n -> infinity} a(n)/a(n-15) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 15 = {1, 2, 5, 7, 11, 13}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 15 = {0, 3, 6, 12}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*((19+6*sqrt(2))/17)/((9+4*sqrt(2))/7)^3 for n mod 15 = {4, 8, 10, 14}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^4/((3+2*sqrt(2))*((19+6*sqrt(2))/17)^2) for n mod 15 = 9.

Examples

			124^2+(124+833)^2 = 15376+915849 = 931225 = 965^2.
		

Crossrefs

Cf. A156835, A076296, A118120, A118554, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17).

Programs

  • PARI
    {forstep(n=0, 50000, [3, 1], if(issquare(2*n^2+1666*n+693889), print1(n, ",")))}

Formula

a(n) = 6*a(n-15)-a(n-30)+1666 for n > 30; a(1) = 0, a(2) = 124, a(3) = 168, a(4) = 187, a(5) = 343, a(6) = 399, a(7) = 595, a(8) = 624, a(9) = 915, a(10) = 952, a(11) = 1260, a(12) = 1372, a(13) = 1768, a(14) = 1827, a(15) = 1975, a(16) = 2499, a(17) = 3135, a(18) = 3367, a(19) = 3468, a(20) = 4312, a(21) = 4620, a(22) = 5712, a(23) = 5875, a(24) = 7524, a(25) = 7735, a(26) = 9499, a(27) = 10143, a(28) = 12427, a(29) = 12768, a(30) = 13624.
G.f.: x*(124+44*x+19*x^2+156*x^3+56*x^4+196*x^5+29*x^6+291*x^7+37*x^8+308*x^9+112*x^10+396*x^11+59*x^12+148*x^13+524*x^14-108*x^15-32*x^16-13*x^17-92*x^18-28*x^19-84*x^20-11*x^21-97*x^22-11*x^23-84*x^24-28*x^25-92*x^26-13*x^27-32*x^28-108*x^29)/((1-x)*(1-6*x^15+x^30)).

Extensions

Edited by Klaus Brockhaus, Feb 16 2009

A201916 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2737)^2 = y^2.

Original entry on oeis.org

0, 75, 203, 323, 552, 708, 1020, 1127, 1311, 1428, 1608, 1820, 1955, 2336, 2675, 3128, 3311, 3627, 3927, 4140, 4508, 4743, 5535, 6003, 6800, 7280, 7848, 8211, 8588, 9240, 9860, 11063, 11895, 13583, 14168, 15180, 15827, 16827, 18011, 18768, 20915, 22836
Offset: 1

Views

Author

T. D. Noe, Feb 09 2012

Keywords

Comments

Note that 2737 = 7 * 17 * 23, the product of the first three distinct primes in A058529 (and A001132) and hence the smallest such number. This sequence satisfies a linear difference equation of order 55 whose 55 initial terms can be found by running the Mathematica program.
There are many sequences like this one. What determines the order of the linear difference equation? All primes p have order 7. For those p, it appears that p^2 has order 11, p^3 order 15, and p^i order 3+4*i. It appears that for semiprimes p*q (with p > q), the order is 19. What is the next term of the sequence beginning 3, 7, 19, 55, 163? This could be sequence A052919, which is 1 + 2*3^f, where f is the number of primes.
The crossref list is thought to be complete up to Feb 14 2012.

Crossrefs

Cf. A001652 (1), A076296 (7), A118120 (17), A118337 (23), A118674 (31).
Cf. A129288 (41), A118675 (47), A118554 (49), A118673 (71), A129289 (73).
Cf. A118676 (79), A129298 (89), A129836 (97), A157119 (103), A161478 (113).
Cf. A129837 (119), A129992 (127), A129544 (137), A161482 (151).
Cf. A206426 (161), A130608 (167), A161486 (191), A185394 (193).
Cf. A129993 (199), A198294 (217), A130609 (223), A129625 (233).
Cf. A204765 (239), A129991 (241), A207058 (263), A129626 (281).
Cf. A205644 (287), A207059 (289), A129640 (313), A205672 (329).
Cf. A129999 (337), A118611 (343), A130610 (359), A207060 (401).
Cf. A129641 (409), A207061 (433), A130645 (439), A130004 (449).
Cf. A129642 (457), A129725 (521), A101152 (569), A130005 (577).
Cf. A207075 (479), A207076 (487), A207077 (497), A207078 (511).
Cf. A111258 (601), A115135 (617), A130013 (647), A130646 (727).
Cf. A122694 (761), A123654 (809), A129010 (833), A130647 (839).
Cf. A129857 (857), A130014 (881), A129974 (937), A129975 (953).
Cf. A130017 (967), A118630 (2401), A118576 (16807).

Programs

  • Mathematica
    d = 2737; terms = 100; t = Select[Range[0, 55000], IntegerQ[Sqrt[#^2 + (#+d)^2]] &]; Do[AppendTo[t, t[[-1]] + 6*t[[-27]] - 6*t[[-28]] - t[[-54]] + t[[-55]]], {terms-55}]; t

Formula

a(n) = a(n-1) + 6*a(n-27) - 6*a(n-28) - a(n-54) + a(n-55), where the 55 initial terms can be computed using the Mathematica program.
G.f.: x^2*(73*x^53 +116*x^52 +100*x^51 +171*x^50 +104*x^49 +184*x^48 +57*x^47 +92*x^46 +55*x^45 +80*x^44 +88*x^43 +53*x^42 +139*x^41 +113*x^40 +139*x^39 +53*x^38 +88*x^37 +80*x^36 +55*x^35 +92*x^34 +57*x^33 +184*x^32 +104*x^31 +171*x^30 +100*x^29 +116*x^28 +73*x^27 -363*x^26 -568*x^25 -480*x^24 -797*x^23 -468*x^22 -792*x^21 -235*x^20 -368*x^19 -213*x^18 -300*x^17 -316*x^16 -183*x^15 -453*x^14 -339*x^13 -381*x^12 -135*x^11 -212*x^10 -180*x^9 -117*x^8 -184*x^7 -107*x^6 -312*x^5 -156*x^4 -229*x^3 -120*x^2 -128*x -75) / ((x -1)*(x^54 -6*x^27 +1)). - Colin Barker, May 18 2015
Showing 1-6 of 6 results.