A076312 a(n) = floor(n/10) + 2*(n mod 10).
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 7, 9, 11, 13, 15, 17, 19, 21
Offset: 0
Keywords
Examples
26468 is not a multiple of 19, as 26468 -> 2646+2*8=2662 -> 266+2*2=270 -> 27+2*0=27=19*1+8, therefore the answer is NO. Is 12882 divisible by 19? 12882 -> 1288+2*2=1292 -> 129+2*2=133 -> 13+2*3=19, therefore the answer is YES.
References
- Erdős, Paul, and János Surányi. Topics in the Theory of Numbers. New York: Springer, 2003. Problem 6, page 3.
- Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Divisibility Tests.
- Wikipedia, Divisibility rule
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Programs
-
Haskell
a076312 n = n' + 2 * m where (n', m) = divMod n 10 -- Reinhard Zumkeller, Jun 01 2013
-
Magma
[Floor(n/10) + 2*(n mod 10): n in [0..100]]; // Vincenzo Librandi, Mar 05 2020
-
Mathematica
f[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Most[idn]]+2idn[[-1]]]; Array[ f,80,0] (* Harvey P. Dale, Mar 01 2020 *)
Formula
G.f.: -x(17x^9-2-2x-2x^2-2x^3-2x^4-2x^5-2x^6-2x^7-2x^8)/((1-x)^2(1+x)(x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)). a(n)=A059995(n)+2*A010879(n). [R. J. Mathar, Jan 24 2009]
Comments