cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076312 a(n) = floor(n/10) + 2*(n mod 10).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 7, 9, 11, 13, 15, 17, 19, 21
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

Delete the last digit from n and add twice this digit to the shortened number. - N. J. A. Sloane, May 25 2019
(n==0 modulo 19) iff (a(n)==0 modulo 19); applied recursively, this property provides a useful test for divisibility by 19.

Examples

			26468 is not a multiple of 19, as 26468 -> 2646+2*8=2662 -> 266+2*2=270 -> 27+2*0=27=19*1+8, therefore the answer is NO.
Is 12882 divisible by 19? 12882 -> 1288+2*2=1292 -> 129+2*2=133 -> 13+2*3=19, therefore the answer is YES.
		

References

  • Erdős, Paul, and János Surányi. Topics in the Theory of Numbers. New York: Springer, 2003. Problem 6, page 3.
  • Karl Menninger, Rechenkniffe, Vandenhoeck & Ruprecht in Goettingen (1961), 79A.

Crossrefs

Programs

  • Haskell
    a076312 n =  n' + 2 * m where (n', m) = divMod n 10
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Magma
    [Floor(n/10) + 2*(n mod 10): n in [0..100]]; // Vincenzo Librandi, Mar 05 2020
  • Mathematica
    f[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Most[idn]]+2idn[[-1]]]; Array[ f,80,0] (* Harvey P. Dale, Mar 01 2020 *)

Formula

G.f.: -x(17x^9-2-2x-2x^2-2x^3-2x^4-2x^5-2x^6-2x^7-2x^8)/((1-x)^2(1+x)(x^4+x^3+x^2+x+1)(x^4-x^3+x^2-x+1)). a(n)=A059995(n)+2*A010879(n). [R. J. Mathar, Jan 24 2009]