A076313 a(n) = floor(n/10) - (n mod 10).
0, -1, -2, -3, -4, -5, -6, -7, -8, -9, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, 8, 7, 6, 5, 4
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Haskell
a076313 = uncurry (-) . flip divMod 10 -- Reinhard Zumkeller, Jun 01 2013
-
Mathematica
Table[Floor[n/10]-Mod[n,10],{n,0,100}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,-1,-2,-3,-4,-5,-6,-7,-8,-9,1},100] (* Harvey P. Dale, Nov 02 2022 *)
-
PARI
a(n)=n\10-n%10 \\ Charles R Greathouse IV, Jan 30 2012
Formula
From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = 11*floor(n/10)-n.
a(n) = (n-11*(n mod 10))/10.
a(n) = (n-11*A010879(n))/10.
G.f.: x*(-8*x^10+11*x^9-1)/((1-x^10)*(1-x)^2). (End)
Comments