cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076313 a(n) = floor(n/10) - (n mod 10).

Original entry on oeis.org

0, -1, -2, -3, -4, -5, -6, -7, -8, -9, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, 8, 7, 6, 5, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

For n<100 equal to the negated alternating digital sum of n (see A055017). - Hieronymus Fischer, Jun 17 2007

Crossrefs

Programs

  • Haskell
    a076313 = uncurry (-) . flip divMod 10 -- Reinhard Zumkeller, Jun 01 2013
  • Mathematica
    Table[Floor[n/10]-Mod[n,10],{n,0,100}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,-1,-2,-3,-4,-5,-6,-7,-8,-9,1},100] (* Harvey P. Dale, Nov 02 2022 *)
  • PARI
    a(n)=n\10-n%10 \\ Charles R Greathouse IV, Jan 30 2012
    

Formula

From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = 11*floor(n/10)-n.
a(n) = (n-11*(n mod 10))/10.
a(n) = 11*A002266(A004526(n))-n=11*A004526(A002266(n))-n.
a(n) = (n-11*A010879(n))/10.
a(n) = (n-11*A000035(n)-22*A010874(A004526(n)))/10.
a(n) = (n-11*A010874(n)-55*A000035(A002266(n)))/10.
G.f.: x*(-8*x^10+11*x^9-1)/((1-x^10)*(1-x)^2). (End)