cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007953 Digital sum (i.e., sum of digits) of n; also called digsum(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14, 15
Offset: 0

Views

Author

R. Muller

Keywords

Comments

Do not confuse with the digital root of n, A010888 (first term that differs is a(19)).
Also the fixed point of the morphism 0 -> {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 1 -> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2 -> {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, etc. - Robert G. Wilson v, Jul 27 2006
For n < 100 equal to (floor(n/10) + n mod 10) = A076314(n). - Hieronymus Fischer, Jun 17 2007
It appears that a(n) is the position of 10*n in the ordered set of numbers obtained by inserting/placing one digit anywhere in the digits of n (except a zero before 1st digit). For instance, for n=2, the resulting set is (12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92) where 20 is at position 2, so a(2) = 2. - Michel Marcus, Aug 01 2022
Also the total number of beads required to represent n on a Russian abacus (schoty). - P. Christopher Staecker, Mar 31 2023
a(n) / a(2n) <= 5 with equality iff n is in A169964, while a(n) / a(3n) is unbounded, since if n = (10^k + 2)/3, then a(n) = 3*k+1, a(3n) = 3, so a(n) / a(3n) = k + 1/3 -> oo when k->oo (see Diophante link). - Bernard Schott, Apr 29 2023
Also the number of symbols needed to write number n in Egyptian numerals for n < 10^7. - Wojciech Graj, Jul 10 2025

Examples

			a(123) = 1 + 2 + 3 = 6, a(9875) = 9 + 8 + 7 + 5 = 29.
		

Crossrefs

Programs

  • Haskell
    a007953 n | n < 10 = n
              | otherwise = a007953 n' + r where (n',r) = divMod n 10
    -- Reinhard Zumkeller, Nov 04 2011, Mar 19 2011
    
  • Magma
    [ &+Intseq(n): n in [0..87] ];  // Bruno Berselli, May 26 2011
    
  • Maple
    A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Mar 17 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] * i, {i, 9}], {n, 50}] (* Stefan Steinerberger, Mar 24 2006 *)
    Table[Plus @@ IntegerDigits @ n, {n, 0, 87}] (* or *)
    Nest[Flatten[# /. a_Integer -> Array[a + # &, 10, 0]] &, {0}, 2] (* Robert G. Wilson v, Jul 27 2006 *)
    Total/@IntegerDigits[Range[0,90]] (* Harvey P. Dale, May 10 2016 *)
    DigitSum[Range[0, 100]] (* Requires v. 14 *) (* Paolo Xausa, May 17 2024 *)
  • PARI
    a(n)=if(n<1, 0, if(n%10, a(n-1)+1, a(n/10))) \\ Recursive, very inefficient. A more efficient recursive variant: a(n)=if(n>9, n=divrem(n, 10); n[2]+a(n[1]), n)
    
  • PARI
    a(n, b=10)={my(s=(n=divrem(n, b))[2]); while(n[1]>=b, s+=(n=divrem(n[1], b))[2]); s+n[1]} \\ M. F. Hasler, Mar 22 2011
    
  • PARI
    a(n)=sum(i=1, #n=digits(n), n[i]) \\ Twice as fast. Not so nice but faster:
    
  • PARI
    a(n)=sum(i=1,#n=Vecsmall(Str(n)),n[i])-48*#n \\ M. F. Hasler, May 10 2015
    /* Since PARI 2.7, one can also use: a(n)=vecsum(digits(n)), or better: A007953=sumdigits. [Edited and commented by M. F. Hasler, Nov 09 2018] */
    
  • PARI
    a(n) = sumdigits(n); \\ Altug Alkan, Apr 19 2018
    
  • Python
    def A007953(n):
        return sum(int(d) for d in str(n)) # Chai Wah Wu, Sep 03 2014
    
  • Python
    def a(n): return sum(map(int, str(n))) # Michael S. Branicky, May 22 2021
    
  • Scala
    (0 to 99).map(.toString.map(.toInt - 48).sum) // Alonso del Arte, Sep 15 2019
    
  • Smalltalk
    "Recursive version for general bases. Set base = 10 for this sequence."
    digitalSum: base
    | s |
    base = 1 ifTrue: [^self].
    (s := self // base) > 0
      ifTrue: [^(s digitalSum: base) + self - (s * base)]
      ifFalse: [^self]
    "by Hieronymus Fischer, Mar 24 2014"
    
  • Swift
    A007953(n): String(n).compactMap{$0.wholeNumberValue}.reduce(0, +) // Egor Khmara, Jun 15 2021

Formula

a(A051885(n)) = n.
a(n) <= 9(log_10(n)+1). - Stefan Steinerberger, Mar 24 2006
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(10n+i) = a(n) + i for 0 <= i <= 9.
a(n) = n - 9*(Sum_{k > 0} floor(n/10^k)) = n - 9*A054899(n). (End)
From Hieronymus Fischer, Jun 17 2007: (Start)
G.f. g(x) = Sum_{k > 0, (x^k - x^(k+10^k) - 9x^(10^k))/(1-x^(10^k))}/(1-x).
a(n) = n - 9*Sum_{10 <= k <= n} Sum_{j|k, j >= 10} floor(log_10(j)) - floor(log_10(j-1)). (End)
From Hieronymus Fischer, Jun 25 2007: (Start)
The g.f. can be expressed in terms of a Lambert series, in that g(x) = (x/(1-x) - 9*L[b(k)](x))/(1-x) where L[b(k)](x) = sum{k >= 0, b(k)*x^k/(1-x^k)} is a Lambert series with b(k) = 1, if k > 1 is a power of 10, else b(k) = 0.
G.f.: g(x) = (Sum_{k > 0} (1 - 9*c(k))*x^k)/(1-x), where c(k) = Sum_{j > 1, j|k} floor(log_10(j)) - floor(log_10(j-1)).
a(n) = n - 9*Sum_{0 < k <= floor(log_10(n))} a(floor(n/10^k))*10^(k-1). (End)
From Hieronymus Fischer, Oct 06 2007: (Start)
a(n) <= 9*(1 + floor(log_10(n))), equality holds for n = 10^m - 1, m > 0.
lim sup (a(n) - 9*log_10(n)) = 0 for n -> oo.
lim inf (a(n+1) - a(n) + 9*log_10(n)) = 1 for n -> oo. (End)
a(n) = A138530(n, 10) for n > 9. - Reinhard Zumkeller, Mar 26 2008
a(A058369(n)) = A004159(A058369(n)); a(A000290(n)) = A004159(n). - Reinhard Zumkeller, Apr 25 2009
a(n) mod 2 = A179081(n). - Reinhard Zumkeller, Jun 28 2010
a(n) <= 9*log_10(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = a(n-1) + a(n-10) - a(n-11), for n < 100. - Alexander R. Povolotsky, Oct 09 2011
a(n) = Sum_{k >= 0} A031298(n, k). - Philippe Deléham, Oct 21 2011
a(n) = a(n mod b^k) + a(floor(n/b^k)), for all k >= 0. - Hieronymus Fischer, Mar 24 2014
Sum_{n>=1} a(n)/(n*(n+1)) = 10*log(10)/9 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

Extensions

More terms from Hieronymus Fischer, Jun 17 2007
Edited by Michel Marcus, Nov 11 2013

A003132 Sum of squares of digits of n.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 4, 5, 8, 13, 20, 29, 40, 53, 68, 85, 9, 10, 13, 18, 25, 34, 45, 58, 73, 90, 16, 17, 20, 25, 32, 41, 52, 65, 80, 97, 25, 26, 29, 34, 41, 50, 61, 74, 89, 106, 36, 37, 40, 45, 52, 61, 72, 85, 100, 117, 49
Offset: 0

Views

Author

Keywords

Comments

It is easy to show that a(n) < 81*(log_10(n)+1). - Stefan Steinerberger, Mar 25 2006
It is known that a(0)=0 and a(1)=1 are the only fixed points of this map. For more information about iterations of this map, see A007770, A099645 and A000216 ff. - M. F. Hasler, May 24 2009
Also known as the "Happy number map", since happy numbers A007770 are those whose trajectory under iterations of this map ends at 1. - M. F. Hasler, Jun 03 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Hugo Steinhaus, One Hundred Problems in Elementary Mathematics, Dover New York, 1979, republication of English translation of Sto Zadań, Basic Books, New York, 1964. Chapter I.2, An interesting property of numbers, pp. 11-12 (available on Google Books).

Crossrefs

Concerning iterations of this map, see A003621, A039943, A099645, A031176, A007770, A000216 (starting with 2), A000218 (starting with 3), A080709 (starting with 4, this is the only nontrivial limit cycle), A000221 (starting with 5), A008460 (starting with 6), A008462 (starting with 8), A008463 (starting with 9), A139566 (starting with 15), A122065 (starting with 74169). - M. F. Hasler, May 24 2009
Cf. A080151, A051885 (record values and where they occur).

Programs

  • Haskell
    a003132 0 = 0
    a003132 x = d ^ 2 + a003132 x' where (x', d) = divMod x 10
    -- Reinhard Zumkeller, May 10 2015, Aug 07 2012, Jul 10 2011
    
  • Magma
    [0] cat [&+[d^2: d in Intseq(n)]: n in [1..80]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A003132 := proc(n) local d; add(d^2,d=convert(n,base,10)) ; end proc: # R. J. Mathar, Oct 16 2010
  • Mathematica
    Table[Sum[DigitCount[n][[i]]*i^2, {i, 1, 9}], {n, 0, 40}] (* Stefan Steinerberger, Mar 25 2006 *)
    Total/@(IntegerDigits[Range[0,80]]^2) (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    A003132(n)=norml2(digits(n)) \\ M. F. Hasler, May 24 2009, updated Apr 12 2015
    
  • Python
    def A003132(n): return sum(int(d)**2 for d in str(n)) # Chai Wah Wu, Apr 02 2021

Formula

a(n) = n^2 - 20*n*floor(n/10) + 81*(Sum_{k>0} floor(n/10^k)^2) + 20*Sum_{k>0} floor(n/10^k)*(floor(n/10^k) - floor(n/10^(k+1))). - Hieronymus Fischer, Jun 17 2007
a(10n+k) = a(n)+k^2, 0 <= k < 10. - Hieronymus Fischer, Jun 17 2007
a(n) = A007953(A048377(n)) - A007953(n). - Reinhard Zumkeller, Jul 10 2011

Extensions

More terms from Stefan Steinerberger, Mar 25 2006
Terms checked using the given PARI code, M. F. Hasler, May 24 2009
Replaced the Maple program with a version which works also for arguments with >2 digits, R. J. Mathar, Oct 16 2010
Added ref to Porges. Steinhaus also treated iterations of this function in his Polish book Sto zadań, but I don't have access to it. - Don Knuth, Sep 07 2015

A055012 Sum of cubes of the digits of n written in base 10.

Original entry on oeis.org

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 2, 9, 28, 65, 126, 217, 344, 513, 730, 8, 9, 16, 35, 72, 133, 224, 351, 520, 737, 27, 28, 35, 54, 91, 152, 243, 370, 539, 756, 64, 65, 72, 91, 128, 189, 280, 407, 576, 793, 125, 126, 133, 152, 189, 250, 341, 468, 637, 854
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

For n > 1999, a(n) < n. The iteration of this map on n either stops at a fixed point (A046197) or has a period of 2 or 3: {55,250,133}, {136,244}, {160,217,352}, or {919,1459}. - T. D. Noe, Jul 17 2007
A165330 and A165331 give the final value and the number of steps when iterating until a fixed point or cycle is reached. - Reinhard Zumkeller, Sep 17 2009

Crossrefs

Cf. A046197 Fixed points; A046459: integers equal to the sum of the digits of their cubes; A072884: 3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n; A164883: cubes with the property that the sum of the cubes of the digits is also a cube.

Programs

  • Magma
    [0] cat [&+[d^3: d in Intseq(n)]: n in [1..60]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055012 := proc(n)
            add(d^3,d=convert(n,base,10)) ;
    end proc: # R. J. Mathar, Dec 15 2011
  • Mathematica
    Total/@((IntegerDigits/@Range[0,60])^3) (* Harvey P. Dale, Jan 27 2012 *)
    Table[Sum[DigitCount[n][[i]] i^3, {i, 9}], {n, 0, 60}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A055012(n)=sum(i=1,#n=digits(n),n[i]^3) \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    def a(n): return sum(map(lambda x: x*x*x, map(int, str(n))))
    print([a(n) for n in range(60)]) # Michael S. Branicky, Jul 13 2022

Formula

a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^3. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^3, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007
From Reinhard Zumkeller, Sep 17 2009: (Start)
a(n) <= 729*A055642(n);
a(A165370(n)) = n and a(m) <> n for m < A165370(n);
a(A031179(n)) = A031179(n);
a(a(A165336(n))) = A165336(n) or a(a(a(A165336(n)))) = A165336(n). (End)
G.f. g(x) = Sum_{k>=0} (1-x^(10^k))*(x^(10^k)+8*x^(2*10^k)+27*x^(3*10^k)+64*x^(4*10^k)+125*x^(5*10^k)+216*x^(6*10^k)+343*x^(7*10^k)+512*x^(8*10^k)+729*x^(9*10^k))/((1-x)*(1-x^(10^(k+1))))
satisfies
g(x) = (x+8*x^2+27*x^3+64*x^4+125*x^5+216*x^6+343*x^7+512*x^8+729*x^9)/(1-x^10) + (1-x^10)*g(x^10)/(1-x). - Robert Israel, Jan 26 2017

Extensions

Edited by M. F. Hasler, Apr 12 2015
Iséki and Stewart links added by Don Knuth, Sep 07 2015

A055017 Difference between sums of alternate digits of n starting with the last, i.e., (sum of ultimate digit of n, antepenultimate digit of n, ...) - (sum of penultimate digit of n, preantepenultimate digit of n, ...).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, -8, -7, -6, -5, -4, -3
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

a(n) is a multiple of 11 iff n is divisible by 11.
Digital sum with alternating signs starting with a positive sign for the rightmost digit. - Hieronymus Fischer, Jun 18 2007
For n < 100, a(n) = (n mod 10 - floor(n/10)) = -A076313(n). - Hieronymus Fischer, Jun 18 2007

Examples

			a(123) = 3-2+1 = 2, a(9875) = 5-7+8-9 = -3.
		

Crossrefs

Cf. A225693 (alternating sum of digits).
Unsigned version differs from A040114 and A040115 when n=100 and from A040997 when n=101.
Cf. A004086.
Cf. analogous sequences for bases 2-9: A065359, A065368, A346688, A346689, A346690, A346691, A346731, A346732 and also A373605 (for primorial base).

Programs

  • Maple
    sumodigs := proc(n) local dg; dg := convert(n,base,10) ; add(op(1+2*i,dg), i=0..floor(nops(dg)-1)/2) ; end proc:
    sumedigs := proc(n) local dg; dg := convert(n,base,10) ; add(op(2+2*i,dg), i=0..floor(nops(dg)-2)/2) ; end proc:
    A055017 := proc(n) sumodigs(n)-sumedigs(n) ; end proc: # R. J. Mathar, Aug 26 2011
  • Python
    def A055017(n): return sum((-1 if i % 2 else 1)*int(j) for i, j in enumerate(str(n)[::-1])) # Chai Wah Wu, May 11 2022
  • Smalltalk
    "Recursive version for general bases"
    "Set base = 10 for this sequence"
    altDigitalSumRight: base
    | s |
    base = 1 ifTrue: [^self \\ 2].
    (s := self // base) > 0
      ifTrue: [^(self - (s * base) - (s altDigitalSumRight: base))]
      ifFalse: [^self]
    [by Hieronymus Fischer, Mar 23 2014]
    

Formula

From Hieronymus Fischer, Jun 18 2007, Jun 25 2007, Mar 23 2014: (Start)
a(n) = n + 11*Sum_{k>=1} (-1)^k*floor(n/10^k).
a(10n+k) = k - a(n), 0 <= k < 10.
G.f.: Sum_{k>=1} (x^k-x^(k+10^k)+(-1)^k*11*x^(10^k))/((1-x^(10^k))*(1-x)).
a(n) = n + 11*Sum_{k=10..n} Sum_{j|k,j>=10} (-1)^floor(log_10(j))*(floor(log_10(j)) - floor(log_10(j-1))).
G.f. expressed in terms of Lambert series: g(x) = (x/(1-x)+11*L[b(k)](x))/(1-x) where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k) = (-1)^floor(log_10(k)) if k>1 is a power of 10, otherwise b(k)=0.
G.f.: (1/(1-x)) * Sum_{k>=1} (1+11*c(k))*x^k, where c(k) = Sum_{j>=2,j|k} (-1)^floor(log_10(j))*(floor(log_10(j))-floor(log_10(j-1))).
Formulas for general bases b > 1 (b = 10 for this sequence).
a(n) = Sum_{k>=0} (-1)^k*(floor(n/b^k) mod b).
a(n) = n + (b+1)*Sum_{k>=1} (-1)^k*floor(n/b^k). Both sums are finite with floor(log_b(n)) as the highest index.
a(n) = a(n mod b^k) + (-1)^k*a(floor(n/b^k)), for all k >= 0.
a(n) = a(n mod b) - a(floor(n/b)).
a(n) = a(n mod b^2) + a(floor(n/b^2)).
a(n) = (-1)^m*A225693(n), where m = floor(log_b(n)).
a(n) = (-1)^k*A225693(A004086(n)), where k = is the number of trailing 0's of n, formally, k = max(j | n == 0 (mod 10^j)).
a(A004086(A004086(n))) = (-1)^k*a(n), where k = is the number of trailing 0's in the decimal representation of n. (End)

A055013 Sum of 4th powers of digits of n.

Original entry on oeis.org

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 16, 17, 32, 97, 272, 641, 1312, 2417, 4112, 6577, 81, 82, 97, 162, 337, 706, 1377, 2482, 4177, 6642, 256, 257, 272, 337, 512, 881, 1552, 2657, 4352, 6817
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

Fixed points are listed in A052455, row 4 of A252648. See also A061210. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^4: d in Intseq(n)]: n in [1..50]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055013 := proc(n)
            add(d^4,d=convert(n,base,10)) ;
    end proc:
    seq(A055013(n),n=0..20) ; # R. J. Mathar, Nov 07 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] i^4, {i, 9}], {n, 0, 50}] (* Bruno Berselli, Feb 01 2013 *)
    Table[Total[IntegerDigits[n]^4],{n,0,50}] (* Harvey P. Dale, Jul 28 2019 *)
  • PARI
    a(n)=round(normlp(n,4)^4) \\ Quite slow. - M. F. Hasler, Apr 12 2015
    
  • PARI
    A055013(n)=sum(i=1,#n=digits(n),n[i]^4) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = sum{k>0, (floor(n/10^k)-10*floor(n/10^(k+1)))^4}. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n)+k^4, 0<=k<10. - Hieronymus Fischer, Jun 25 2007

A055014 Sum of 5th powers of digits of n.

Original entry on oeis.org

0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 1, 2, 33, 244, 1025, 3126, 7777, 16808, 32769, 59050, 32, 33, 64, 275, 1056, 3157, 7808, 16839, 32800, 59081, 243, 244, 275, 486, 1267, 3368, 8019, 17050, 33011, 59292, 1024, 1025, 1056, 1267, 2048
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

Fixed points are listed in A052464. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^5: d in Intseq(n)]: n in [1..45]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055014 := proc(n)
       add(d^5,d=convert(n,base,10)) ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    Total/@(IntegerDigits[Range[50]]^5)  (* Harvey P. Dale, Jan 22 2011 *)
    Table[Sum[DigitCount[n][[i]] i^5, {i, 9}], {n, 0, 45}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A055014(n)=sum(i=1, #n=digits(n), n[i]^5) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^5. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^5, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007

A076314 a(n) = floor(n/10) + (n mod 10).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 8, 9, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 06 2002

Keywords

Comments

For n<100 this is equal to the digital sum of n (see A007953). - Hieronymus Fischer, Jun 17 2007

Examples

			a(15) = floor(15 / 10) + (15 mod 10) = 1 + 5 = 6. - _Indranil Ghosh_, Feb 13 2017
		

Crossrefs

Programs

Formula

From Hieronymus Fischer, Jun 17 2007: (Start)
a(n) = n - 9*floor(n/10).
a(n) = (n + 9*(n mod 10))/10.
a(n) = n - 9*A002266(A004526(n)) = n - 9*A004526(A002266(n)).
a(n) = (n + 9*A010879(n))/10.
a(n) = (n + 9*A000035(n) + 18*A010874(A004526(n)))/10.
a(n) = (n + 9*A010874(n) + 45*A000035(A002266(n)))/10.
G.f.: x*(8*x^10 - 9*x^9 + 1)/((1 - x^10)*(1 - x)^2). (End)
a(n) = A033930(n) for 1 <= n < 100. - R. J. Mathar, Sep 21 2008
a(n) = +a(n-1) + a(n-10) - a(n-11). - R. J. Mathar, Feb 20 2011

A055015 Sum of 6th powers of digits of n.

Original entry on oeis.org

0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1, 2, 65, 730, 4097, 15626, 46657, 117650, 262145, 531442, 64, 65, 128, 793, 4160, 15689, 46720, 117713, 262208, 531505, 729, 730, 793, 1458, 4825, 16354, 47385, 118378, 262873
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

The only fixed points (n = 0, 1 and 548834) are listed in row 6 of A252648. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^6: d in Intseq(n)]: n in [1..40]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    for n from 0 to 3 do seq(n^6+j^6, j=0..9 ); od; # Zerinvary Lajos, Nov 06 2006
  • Mathematica
    Table[Sum[DigitCount[n][[i]] i^6, {i, 9}], {n, 0, 40}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A055015(n)=sum(i=1,#n=digits(n),n[i]^6) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = Sum_{k>0} (floor(n/10^k) - 10*floor(n/10^(k+1)))^6. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^6, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007

A241494 Pyramid Top Numbers: write the decimal digits of 'n' (a nonnegative integer) and take successive absolute differences ("pyramidalization"). The number at the top of the pyramid is 'a(n)'.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5
Offset: 0

Views

Author

Filipi R. de Oliveira, Apr 24 2014

Keywords

Comments

Through the so-called "pyramidalization" process (see A227876), a given nonnegative integer is expanded into its digits and transformed into a pyramid of successive absolute differences between digits. The present sequence is built only with the top number 'a(n)' generated from its correspondent nonnegative integer 'n'.

Examples

			If n=1735, a(n)=0:
______0 ------>a(n)
____2_:_2
__6_:_4_:_2
1_:_7_:_3_:_5
		

Crossrefs

Cf. A227876 for the pyramidalization process.
Cf. A076313 - its first 100 terms have the same absolute value, diverging afterwards; cf. A225693 and A055017 (A040997) for the same reason.

Programs

  • PARI
    a(n)=my(d=Vecsmall(digits(n))); forstep(k=#d-1,1,-1, for(j=1,k, d[j]=abs(d[j]-d[j+1]))); d[1] \\ Charles R Greathouse IV, Apr 24 2025

Formula

a(n)=n, if 0<=n<=9.
a(n)=|mod(n;10)-floor(n/10)|, if 10<=n<=99.
Showing 1-9 of 9 results.