A076339 Primes of the form 512*k+1.
7681, 10753, 11777, 12289, 13313, 15361, 17921, 18433, 19457, 23041, 25601, 26113, 32257, 36353, 37889, 39937, 40961, 45569, 50177, 51713, 58369, 59393, 61441, 64513, 65537, 67073, 70657, 76289, 76801, 79873, 80897, 81409, 83969
Offset: 1
Examples
A076338(15) = 512*15+1 = a(1) = 7681 = A000040(974); A076338(21) = 512*21+1 = a(2) = 10753 = A000040(1311); a(38) - a(37) = 95233 - 87553 = 7680 = a(1)-1.
References
- M. Kraitchik, Theorie des Nombres, Gauthier-Villars (I. 1922, II. 1929).
- M. Kraitchik, Recherches sur la theorie des nombres, Gauthier-Villars (1924).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a076339 n = a076339_list !! (n-1) a076339_list = filter ((== 1) . a010051) [1,513..] -- Reinhard Zumkeller, Mar 06 2012
-
Mathematica
Select[512 Range[164] + 1, PrimeQ] (* Bruno Berselli, Feb 23 2012 *)
-
PARI
forprimestep(p=7681,83969,512, print1(p", ")) \\ Charles R Greathouse IV, Nov 01 2022
Formula
a(n) ~ 256n log n. - Charles R Greathouse IV, Nov 01 2022
Comments