cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A218166 a(n) is the smallest positive integer k such that k^256 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 512*b (see A076339).

Original entry on oeis.org

62, 10, 24, 3, 15, 98, 325, 6, 25, 52, 114, 135, 330, 53, 21, 55, 248, 365, 66, 304, 125, 41, 60, 426, 157, 27, 116, 511, 788, 27, 36, 152, 185, 317, 112, 228, 490, 563, 99, 198, 828, 436, 585, 1107, 834, 1042, 82, 101, 133, 287, 348, 119, 485, 2323, 148, 133
Offset: 1

Views

Author

Michel Lagneau, Oct 22 2012

Keywords

Comments

A076339(n): primes of form 512*n+1.

Crossrefs

Cf. A076339.

Programs

  • Mathematica
    aa = {}; Do[p = Prime[n]; If[Mod[p, 512] == 1, k = 1; While[ ! Mod[k^256 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 20000}]; aa

A002144 Pythagorean primes: primes of the form 4*k + 1.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449, 457, 461, 509, 521, 541, 557, 569, 577, 593, 601, 613, 617
Offset: 1

Views

Author

Keywords

Comments

Rational primes that decompose in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
These are the prime terms of A009003.
-1 is a quadratic residue mod a prime p if and only if p is in this sequence.
Sin(a(n)*Pi/2) = 1 with Pi = 3.1415..., see A070750. - Reinhard Zumkeller, May 04 2002
If at least one of the odd primes p, q belongs to the sequence, then either both or neither of the congruences x^2 = p (mod q), x^2 = q (mod p) are solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Odd primes such that binomial(p-1, (p-1)/2) == 1 (mod p). - Benoit Cloitre, Feb 07 2004
Primes that are the hypotenuse of a right triangle with integer sides. The Pythagorean triple is {A002365(n), A002366(n), a(n)}.
Also, primes of the form a^k + b^k, k > 1. - Amarnath Murthy, Nov 17 2003
The square of a(n) is the average of two other squares. This fact gives rise to a class of monic polynomials x^2 + bx + c with b = a(n) that will factor over the integers regardless of the sign of c. See A114200. - Owen Mertens (owenmertens(AT)missouristate.edu), Nov 16 2005
Also such primes p that the last digit is always 1 for the Nexus numbers of form n^p - (n-1)^p. - Alexander Adamchuk, Aug 10 2006
The set of Pythagorean primes is a proper subset of the set of positive fundamental discriminants (A003658). - Paul Muljadi, Mar 28 2008
A079260(a(n)) = 1; complement of A137409. - Reinhard Zumkeller, Oct 11 2008
From Artur Jasinski, Dec 10 2008: (Start)
If we take 4 numbers: 1, A002314(n), A152676(n), A152680(n) then multiplication table modulo a(n) is isomorphic to the Latin square:
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1
and isomorphic to the multiplication table of {1, i, -i, -1} where i is sqrt(-1), A152680(n) is isomorphic to -1, A002314(n) with i or -i and A152676(n) vice versa -i or i. 1, A002314(n), A152676(n), A152680(n) are subfield of Galois field [a(n)]. (End)
Primes p such that the arithmetic mean of divisors of p^3 is an integer. There are 2 sequences of such primes: this one and A002145. - Ctibor O. Zizka, Oct 20 2009
Equivalently, the primes p for which the smallest extension of F_p containing the square roots of unity (necessarily F_p) contains the 4th roots of unity. In this respect, the n = 2 case of a family of sequences: see n=3 (A129805) and n=5 (A172469). - Katherine E. Stange, Feb 03 2010
Subsequence of A007969. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = 1.
k^k - 1 is divisible by 4*k + 1 if 4*k + 1 is a prime (see Dickson reference). - Gary Detlefs, May 22 2013
Not only are the squares of these primes the sum of two nonzero squares, but the primes themselves are also. 2 is the only prime equal to the sum of two nonzero squares and whose square is not. 2 is therefore not a Pythagorean prime. - Jean-Christophe Hervé, Nov 10 2013
The statement that these primes are the sum of two nonzero squares follows from Fermat's theorem on the sum of two squares. - Jerzy R Borysowicz, Jan 02 2019
The decompositions of the prime and its square into two nonzero squares are unique. - Jean-Christophe Hervé, Nov 11 2013. See the Dickson reference, Vol. II, (B) on p. 227. - Wolfdieter Lang, Jan 13 2015
p^e for p prime of the form 4*k+1 and e >= 1 is the sum of 2 nonzero squares. - Jon Perry, Nov 23 2014
Primes p such that the area of the isosceles triangle of sides (p, p, q) for some integer q is an integer. - Michel Lagneau, Dec 31 2014
This is the set of all primes that are the average of two squares. - Richard R. Forberg, Mar 01 2015
Numbers k such that ((k-3)!!)^2 == -1 (mod k). - Thomas Ordowski, Jul 28 2016
This is a subsequence of primes of A004431 and also of A016813. - Bernard Schott, Apr 30 2022
In addition to the comment from Jean-Christophe Hervé, Nov 10 2013: All powers as well as the products of any of these primes are the sum of two nonzero squares. They are terms of A001481, which is closed under multiplication. - Klaus Purath, Nov 19 2023

Examples

			The following table shows the relationship between several closely related sequences:
Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b;
a = A002331, b = A002330, t_1 = ab/2 = A070151;
p^2 = c^2 + d^2 with c < d; c = A002366, d = A002365,
t_2 = 2ab = A145046, t_3 = b^2 - a^2 = A070079,
with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2).
  ---------------------------------
   p  a  b  t_1  c   d t_2 t_3  t_4
  ---------------------------------
   5  1  2   1   3   4   4   3    6
  13  2  3   3   5  12  12   5   30
  17  1  4   2   8  15   8  15   60
  29  2  5   5  20  21  20  21  210
  37  1  6   3  12  35  12  35  210
  41  4  5  10   9  40  40   9  180
  53  2  7   7  28  45  28  45  630
  ...
a(7) = 53 = A002972(7)^2 + (2*A002973(7))^2 = 7^2 + (2*1)^2 = 49 + 4, and this is the only way. - _Wolfdieter Lang_, Jan 13 2015
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. E. Dickson, "History of the Theory of Numbers", Chelsea Publishing Company, 1919, Vol I, page 386
  • L. E. Dickson, History of the Theory of Numbers, Carnegie Institution, Publ. No. 256, Vol. II, Washington D.C., 1920, p. 227.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • M. du Sautoy, The Music of the Primes, Fourth Estate / HarperCollins, 2003; see p. 76.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 241, 243.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Cf. A004613 (multiplicative closure).
Apart from initial term, same as A002313.
For values of n see A005098.
Primes in A020668.

Programs

  • Haskell
    a002144 n = a002144_list !! (n-1)
    a002144_list = filter ((== 1) . a010051) [1,5..]
    -- Reinhard Zumkeller, Mar 06 2012, Feb 22 2011
    
  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4*n + 1 ]; // Vincenzo Librandi, Nov 23 2014
    
  • Maple
    a := []; for n from 1 to 500 do if isprime(4*n+1) then a := [op(a),4*n+1]; fi; od: A002144 := n->a[n];
    # alternative
    A002144 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            5;
        else
            for a from procname(n-1)+4 by 4 do
                if isprime(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002144(n),n=1..100) ; # R. J. Mathar, Jan 31 2024
  • Mathematica
    Select[4*Range[140] + 1, PrimeQ[ # ] &] (* Stefan Steinerberger, Apr 16 2006 *)
    Select[Prime[Range[150]],Mod[#,4]==1&] (* Harvey P. Dale, Jan 28 2021 *)
  • PARI
    select(p->p%4==1,primes(1000))
    
  • PARI
    A002144_next(p=A2144[#A2144])={until(isprime(p+=4),);p} /* NB: p must be of the form 4k+1. Beyond primelimit, this is *much* faster than forprime(p=...,, p%4==1 && return(p)). */
    A2144=List(5); A002144(n)={while(#A2144A002144_next())); A2144[n]}
    \\ M. F. Hasler, Jul 06 2024
    
  • Python
    from sympy import prime
    A002144 = [n for n in (prime(x) for x in range(1,10**3)) if not (n-1) % 4]
    # Chai Wah Wu, Sep 01 2014
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, range(1, 618, 4)))) # Michael S. Branicky, May 13 2021
    
  • SageMath
    def A002144_list(n): # returns all Pythagorean primes <= n
        return [x for x in prime_range(5,n+1) if x % 4 == 1]
    A002144_list(617) # Peter Luschny, Sep 12 2012

Formula

Odd primes of form x^2 + y^2, (x=A002331, y=A002330, with x < y) or of form u^2 + 4*v^2, (u = A002972, v = A002973, with u odd). - Lekraj Beedassy, Jul 16 2004
p^2 - 1 = 12*Sum_{i = 0..floor(p/4)} floor(sqrt(i*p)) where p = a(n) = 4*n + 1. [Shirali]
a(n) = A000290(A002972(n)) + A000290(2*A002973(n)) = A000290(A002331(n+1)) + A000290(A002330(n+1)). - Reinhard Zumkeller, Feb 16 2010
a(n) = A002972(n)^2 + (2*A002973(n))^2, n >= 1. See the Jean-Christophe Hervé Nov 11 2013 comment. - Wolfdieter Lang, Jan 13 2015
a(n) = 4*A005098(n) + 1. - Zak Seidov, Sep 16 2018
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A088539.
Product_{k>=1} (1 + 1/a(k)^2) = A243380.
Product_{k>=1} (1 - 1/a(k)^3) = A334425.
Product_{k>=1} (1 + 1/a(k)^3) = A334424.
Product_{k>=1} (1 - 1/a(k)^4) = A334446.
Product_{k>=1} (1 + 1/a(k)^4) = A334445.
Product_{k>=1} (1 - 1/a(k)^5) = A334450.
Product_{k>=1} (1 + 1/a(k)^5) = A334449. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/A002145(k)) / (1 + 1/a(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/A002145(k)) / (1 - 1/a(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log((2*n*s)! * zeta(n*s) * abs(EulerE(n*s - 1)) / (Pi^(n*s) * 2^(2*n*s) * BernoulliB(2*n*s) * (2^(n*s) + 1) * (n*s - 1)!))/n, s >= 3 odd number. - Dimitris Valianatos, May 21 2020
Legendre symbol (-1, a(n)) = +1, for n >= 1. - Wolfdieter Lang, Mar 03 2021

A007519 Primes of form 8n+1, that is, primes congruent to 1 mod 8.

Original entry on oeis.org

17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1289, 1297, 1321, 1361
Offset: 1

Views

Author

Keywords

Comments

Discriminant is 32, class is 2. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac and gcd(a, b, c) = 1.
Integers n (n > 9) of form 4k + 1 such that binomial(n-1, (n-1)/4) == 1 (mod n) - Benoit Cloitre, Feb 07 2004
Primes of the form x^2 + 8y^2. - T. D. Noe, May 07 2005
Also primes of the form x^2 + 16y^2. See A140633. - T. D. Noe, May 19 2008
Is this the same sequence as A141174?
Being a subset of A001132 and also a subset of A038873, this is also a subset of the primes of the form u^2 - 2v^2. - Tito Piezas III, Dec 28 2008
These primes p are only which possess the property: for every integer m from interval [0, p) with the Hamming distance D(m, p) = 2, there exists an integer h from (m, p) with D(m, h) = 2. - Vladimir Shevelev, Apr 18 2012
Primes p such that p XOR 6 = p + 6. - Brad Clardy, Jul 22 2012
Odd primes p such that -1 is a 4th power mod p. - Eric M. Schmidt, Mar 27 2014
There are infinitely many primes of this form. See Brubaker link. - Alonso del Arte, Jan 12 2017
These primes split in Z[sqrt(2)]. For example, 17 = (-1)(1 - 3*sqrt(2))(1 + 3*sqrt(2)). This is also true of primes of the form 8n - 1. - Alonso del Arte, Jan 26 2017

Examples

			a(1) = 17 = 2 * 8 + 1 = (10001)_2. All numbers m from [0, 17) with the Hamming distance D(m, 17) = 2 are 0, 3, 5, 9. For m = 0, we can take h = 3, since 3 is drawn from (0, 17) and D(0, 3) = 2; for m = 3, we can take h = 5, since 5 from (3, 17) and D(3, 5) = 2; for m = 5, we can take h = 6, since 6 from (5, 17) and D(5, 6) = 2; for m = 9, we can take h = 10, since 10 is drawn from (9, 17) and D(9, 10) = 2. - _Vladimir Shevelev_, Apr 18 2012
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 261.

Crossrefs

Subsequence of A017077 and of A038873.
Cf. A139643. Complement in primes of A154264. Cf. A042987.
Cf. A038872 (d = 5). A038873 (d = 8). A068228, A141123 (d = 12). A038883 (d = 13). A038889 (d = 17). A141111, A141112 (d = 65).
Cf. also A242663.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Haskell
    a007519 n = a007519_list !! (n-1)
    a007519_list = filter ((== 1) . a010051) [1,9..]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Magma
    [p: p in PrimesUpTo(2000) | p mod 8 eq 1 ]; // Vincenzo Librandi, Aug 21 2012
    
  • Mathematica
    Select[1 + 8 Range@ 170, PrimeQ] (* Robert G. Wilson v *)
  • PARI
    forprime(p=2,1e4,if(p%8==1,print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    forprimestep(p=17,10^4,8, print1(p", ")) \\ Charles R Greathouse IV, Jul 17 2024
    
  • PARI
    lista(nn)= my(vpr = []); for (x = 0, nn, y = 0; while ((v = x^2+6*x*y+y^2) < nn, if (isprime(v), if (! vecsearch(vpr, v), vpr = concat(vpr, v); vpr = vecsort(vpr););); y++;);); vpr; \\ Michel Marcus, Feb 01 2014
    
  • PARI
    A007519_upto(N, start=1)=select(t->t%8==1,primes([start,N]))
    #A7519=A007519_upto(10^5)
    A007519(n)={while(#A7519A007519_upto(N*3\2, N+1))); A7519[n]} \\ M. F. Hasler, May 22 2025
    
  • SageMath
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 4, -4])
    print(Q.represented_positives(1361, 'prime'))  # Peter Luschny, Jan 26 2017

A094407 Primes of the form 16n+1.

Original entry on oeis.org

17, 97, 113, 193, 241, 257, 337, 353, 401, 433, 449, 577, 593, 641, 673, 769, 881, 929, 977, 1009, 1153, 1201, 1217, 1249, 1297, 1361, 1409, 1489, 1553, 1601, 1697, 1777, 1873, 1889, 2017, 2081, 2113, 2129, 2161, 2273, 2417, 2593, 2609, 2657, 2689, 2753
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jun 03 2004

Keywords

Comments

Subsequence of A007519 (primes of form 8n+1). - Zak Seidov, May 16 2012
Primes p such that p XOR 14 = p + 14. - Brad Clardy, Jul 23 2012
A prime of the form 16n+1 is represented either by both x^2+32y^2 and x^2+64y^2 or by neither (see Kaplansky link). - Michel Marcus, Dec 23 2012
Odd primes p such that -1 is an 8th power mod p. - Eric M. Schmidt, Mar 27 2014

Crossrefs

Programs

  • Haskell
    a094407 n = a094407_list !! (n-1)
    a094407_list = filter ((== 1) . a010051) [1,17..]
    -- Reinhard Zumkeller, Mar 06 2012
  • Maple
    p:=proc(n) if isprime(16*n+1)=true then 16*n+1 else fi end:seq(p(n),n=1..200); # Emeric Deutsch, Dec 23 2004
  • Mathematica
    lst={};Do[p=16*n+1;If[PrimeQ[p],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *)
    Select[16*Range[200]+1,PrimeQ] (* Harvey P. Dale, Nov 04 2017 *)

Extensions

More terms from Emeric Deutsch, Dec 23 2004

A133870 Primes of the form 32*n + 1.

Original entry on oeis.org

97, 193, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1249, 1409, 1601, 1697, 1889, 2017, 2081, 2113, 2273, 2593, 2657, 2689, 2753, 3041, 3137, 3169, 3329, 3361, 3457, 3617, 4001, 4129, 4289, 4481, 4513, 4673, 4801, 4993, 5153, 5281, 5441, 5569
Offset: 1

Views

Author

Zak Seidov, Sep 27 2007

Keywords

Comments

Corresponding n's: 3, 6, 8, 11, 14, 18, 20, 21, 24, 29, 36, 38, 39, ... (A133869).
These primes p are the only ones with the property that for every integer m from interval [0,p) with the Hamming distance D(m,p) = 2 or 3, there exists an integer h from (m,p) with D(m,h) = D(m,p). - Vladimir Shevelev, Apr 19 2012
Primes p such that p XOR 30 = p + 30. - Brad Clardy, Jul 22 2012
Odd primes p such that -1 is a 16th power mod p. - Eric M. Schmidt, Mar 27 2014

Crossrefs

Programs

  • Haskell
    a133870 n = a133870_list !! (n-1)
    a133870_list = filter ((== 1) . a010051) [1,33..]
    -- Reinhard Zumkeller, Mar 06 2012
    
  • Magma
    [p: p in PrimesUpTo(12000) | p mod 32 eq 1 ]; // Vincenzo Librandi, Aug 18 2012
  • Mathematica
    Select[32*Range[175] + 1, PrimeQ] (* Alonso del Arte, Jul 24 2012 *)
    Select[Prime[Range[4000]],MemberQ[{1},Mod[#,32]]&] (* Vincenzo Librandi, Aug 18 2012 *)

A142925 Primes congruent to 1 mod 64.

Original entry on oeis.org

193, 257, 449, 577, 641, 769, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4289, 4481, 4673, 4801, 4993, 5441, 5569, 5953, 6337, 6529, 6977, 7297, 7489, 7681, 7873, 7937, 8513, 8641, 9281, 9473, 9601, 9857, 10177, 10369, 10433, 10753, 11329
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Odd primes p such that -1 is a 32nd power mod p. - Eric M. Schmidt, Mar 27 2014

Crossrefs

Programs

A208177 Primes of the form 128*k + 1.

Original entry on oeis.org

257, 641, 769, 1153, 1409, 2689, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857, 10369, 10753, 11393, 11777, 12161, 12289, 13313, 13441, 13697, 14081, 14593, 15233, 15361, 16001, 17921, 18049, 18433, 19073, 19457, 19841, 20353, 21121, 21377
Offset: 1

Views

Author

Bruno Berselli, Feb 25 2012

Keywords

Comments

Odd primes p such that -1 is a 64th power mod p. - Eric M. Schmidt, Mar 27 2014

Crossrefs

Programs

  • Haskell
    a208177 n = a208177_list !! (n-1)
    a208177_list = filter ((== 1) . a010051) [1,129..]
    -- Reinhard Zumkeller, Mar 06 2012
  • Magma
    [ p: p in PrimesUpTo(22000) | p mod 128 eq 1 ];
    
  • Mathematica
    Select[128 Range[167] + 1, PrimeQ]
  • PARI
    for(n=1,167,r=128*n+1; if(isprime(r), print1(r", ")));
    

Formula

a(n) ~ 64n log n. - Charles R Greathouse IV, Nov 01 2022

A208178 Primes of the form 256*k + 1.

Original entry on oeis.org

257, 769, 3329, 7681, 7937, 9473, 10753, 11777, 12289, 13313, 14081, 14593, 15361, 17921, 18433, 19457, 22273, 23041, 23297, 25601, 26113, 26881, 30977, 31489, 32257, 36097, 36353, 37633, 37889, 39937, 40193, 40961, 41729, 43777, 45569, 46337, 49409, 49921
Offset: 1

Views

Author

Bruno Berselli, Feb 25 2012

Keywords

Comments

Odd primes p such that -1 is a 128th power mod p. - Eric M. Schmidt, Mar 27 2014

Crossrefs

Programs

  • Haskell
    a208178 n = a208178_list !! (n-1)
    a208178_list = filter ((== 1) . a010051) [1,257..]
    -- Reinhard Zumkeller, Mar 06 2012
  • Magma
    [ p: p in PrimesUpTo(50000) | p mod 256 eq 1 ];
    
  • Mathematica
    Select[256 Range[195] + 1, PrimeQ]
  • PARI
    for(n=1,195,r=256*n+1; if(isprime(r), print1(r", ")));
    

Formula

a(n) ~ 128n log n. - Charles R Greathouse IV, Nov 01 2022

A076338 a(n) = 512*n + 1.

Original entry on oeis.org

1, 513, 1025, 1537, 2049, 2561, 3073, 3585, 4097, 4609, 5121, 5633, 6145, 6657, 7169, 7681, 8193, 8705, 9217, 9729, 10241, 10753, 11265, 11777, 12289, 12801, 13313, 13825, 14337, 14849, 15361, 15873, 16385, 16897, 17409, 17921, 18433
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 07 2002

Keywords

Comments

First prime is a(15) = 7681, see A076339.

Crossrefs

Cf. A076339.

Programs

  • Haskell
    a076338 n = (+ 1) . (* 512)
    a076338_list = [1,513..]  -- Reinhard Zumkeller, Mar 08 2012
  • Magma
    I:=[1, 513]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 23 2012
    
  • Mathematica
    LinearRecurrence[{2, -1}, {1, 513}, 50] (* Vincenzo Librandi, Feb 23 2012 *)
  • PARI
    for(n=0, 50, print1(512*n+1", ")); \\ Vincenzo Librandi, Feb 23 2012
    

Formula

G.f.: (1+511*x)/(1-x)^2. - Vincenzo Librandi, Feb 23 2012
a(n) = 2*a(n-1)-a(n-2). - Vincenzo Librandi, Feb 23 2012
Showing 1-9 of 9 results.