A218162 a(n) is the smallest positive integer k such that k^16 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 32*b (see A133870(n)).
19, 8, 15, 6, 10, 33, 4, 107, 43, 170, 194, 21, 86, 10, 109, 6, 31, 227, 212, 108, 75, 5, 13, 21, 36, 516, 119, 68, 69, 264, 281, 634, 186, 214, 210, 50, 397, 277, 227, 112, 461, 329, 47, 1399, 257, 231, 131, 68, 530, 981, 242, 298, 219, 508, 196, 266, 97, 234
Offset: 1
Keywords
Examples
a(5) = 10 because 10^16+1 = 10000000000000001 = 353 * 449 * 641 * 1409 * 69857 with A133870(5) = 449.
Crossrefs
Cf. A133870.
Programs
-
Mathematica
aa = {}; Do[p = Prime[n]; If[Mod[p, 32] == 1, k = 1; While[ ! Mod[k^16 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 300}]; aa
Comments