A218163 a(n) is the smallest positive integer k such that k^32 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 64*b (see A142925).
11, 11, 24, 20, 2, 12, 43, 103, 17, 13, 101, 15, 6, 99, 56, 297, 56, 573, 48, 31, 109, 77, 241, 67, 329, 267, 252, 27, 14, 330, 176, 151, 444, 948, 805, 33, 836, 123, 173, 437, 13, 136, 217, 392, 503, 349, 88, 185, 563, 1230, 231, 1152, 334, 368, 217, 817
Offset: 1
Keywords
Examples
a(1) = a(2) = 11 because 11^32+1 = 2111377674535255285545615254209922 = 2 * 193 * 257 * 21283620033217629539178799361 with A142925(1) = 193 and A142925(2) = 257.
Crossrefs
Cf. A142925.
Programs
-
Mathematica
aa = {}; Do[p = Prime[n]; If[Mod[p, 64] == 1, k = 1; While[ ! Mod[k^32 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 2000}]; aa
Comments