A218154 a(n) is the smallest positive integer k such that k^8 + 1 == 0 mod p, where p is the n-th prime of the form 1 + 16*b (see A094407).
3, 8, 35, 3, 44, 2, 30, 36, 30, 151, 35, 27, 82, 16, 8, 27, 68, 40, 52, 62, 67, 104, 287, 98, 157, 63, 100, 143, 99, 257, 36, 189, 151, 458, 108, 155, 348, 105, 227, 598, 67, 25, 460, 169, 250, 342, 24, 423, 286, 221, 627, 113, 107, 206, 279, 506, 630, 57, 39
Offset: 1
Keywords
Examples
a(5) = 44 because 44^8+1 = 14048223625217 = 17 * 241 * 3457 * 991873 with A094407 (5) = 241.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A094407 (primes of form 16k+1).
Programs
-
Maple
P:= select(isprime, [seq(i,i=1..10000,16)]): map(t -> min(map(rhs@op, [msolve(k^8+1=0,t)])), P); # Robert Israel, May 15 2019
-
Mathematica
aa = {}; Do[p = Prime[n]; If[Mod[p, 16] == 1, k = 1; While[ ! Mod[k^8 + 1, p] == 0, k++ ]; AppendTo[aa, k]], {n, 300}]; aa
Comments